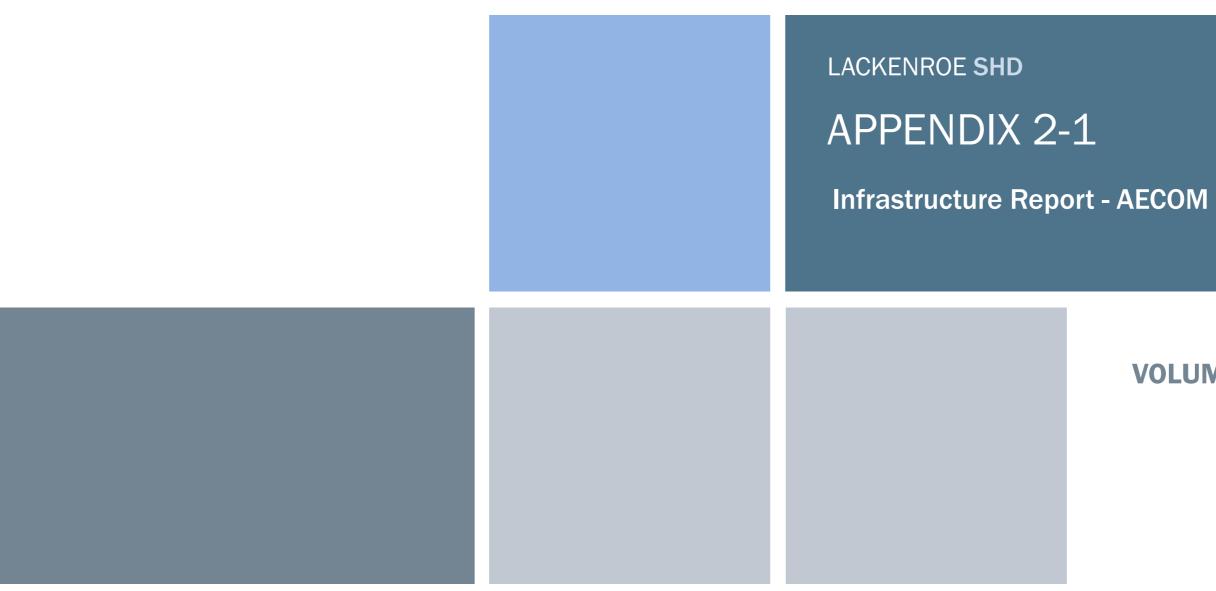


LACKENROE SHD

APPENDIX 2


Project Description

VOLUME III | Appendices

VOLUME III | Appendices

ΑΞϹΟΜ

Glounthaune SHD

Quality information

Prepared by APrenchargant

Emma Millenovich

Checked by

Aileen PrendergastEmma McKendrickPrincipal EngineerRegional Director

Revision History

Revision	Revision date	Details	Authorized	Name	Position
0	3 rd December 2021	Issued for Planning	AP	Aileen Prendergast	Principal Engineer

Distribution List

# Hard Copies	PDF Required	Association / Comp
10	Yes	Westhill/ HW Plannin Planning & Design/ K

Glounthaune SHD

Infrastructure Report

Bluescape Limited

Project number: 60592432

Verified by

chause

Laura Shaughnessy Principal Engineer Approved by

APrenchigant

Aileen Prendergast Principal Engineer

bany Name

ng/ Deady Gahan Architects/ MHL/ CSR Land Kelleher Ecology/ AWN/ John Cronin

Table of Contents

1.	Introduction
	1.1 Background
	1.2 Site Location
	1.3 Proposed Development
2.	Surface Water Drainage
	2.1 Existing Surface Water Drainage
	2.2 Proposed Surface Water Drainage
	2.2.1 Surface Water Attenuation
	2.2.1.1 Permeable Paving
	2.2.1.2 Green Roof
	2.2.1.3 Attenuation Tanks
	2.2.1.4 Petrol & Oil Interceptor
	2.2.2 Design Criteria
	2.3 Drainage Maintenance Inspection Ch
3.	Foul Water Drainage
	3.1 Existing Foul Water Drainage
	3.2 Proposed Foul Water Drainage
4.	Water Supply
	4.1 Existing Water Supply
	4.2 Proposed Water Supply
Appe	endix A - Irish Water COF
Appe	endix B – Irish Water Statement of Design Ac
Appe	endix C - Glounthaune QBar calcs
Appe	endix D – Glounthaune Drainage Surface Wa
Appe	endix E - Drainage Maintenance Inspection C
Appe	endix F - Glounthaune Drainage Foul Water I
	endix G - StormTech MC3500 & MC4500

Figures

Figure 1-1 - Site Location - Glountha	aune, Co. Co
Figure 1-2 – Site Location and Layo	ut
Figure 2-1 – Existing Surface Water	Drainage Ne
Figure 2-2 – Existing Channel on the	e Terrace/ Jo
Figure 2-3 – Existing Outfall at Glou	
Figure 2-4 – Existing Outfall east of	
Figure 2-5 – Location of Existing Ou	
Figure 2-6 – Permeable Paving Syst	
Figure 2-7 – Green Roof Layers (Ex	``
Figure 2-8 – Attenuation Tank Typica	
Figure 2-9 – Typical Petrol Intercept	
Figure 3-1 – Existing Wastewater Dr	(
Figure 3-2 – Existing Wastewater Dr	•
Figure 4-1 – Existing Watermain	U U

Tables

Table 1. Proposed Foul Water Hydraulic LoadinTable 2. Proposed Water Demand......

Prepared for:

Bluescape Limited

Prepared by:

AECOM Ireland Limited 1st floor, Montrose House Carrigaline Road Douglas, Cork T12 P088 Ireland

T: +353 21 436 5006 F: +353 21 436 5156 aecom.com

© AECOM Ireland Limited. All Rights Reserved.

This document has been prepared by AECOM Ireland Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

	5
	5
	-
	-
hecklist	
	-
	. 17
	. 19
	. 19
	. 19
	. 21
cceptance (SODA)	. 22
ater Network Details	. 24
Checklist	
Network Details	

ork	5
etwork	
ohnstown Close	
in Station	
e Train Station at Johnstown Park	10
Glounthaune Train Station	10
from Ciria C753)	12
iria C753)	13
	13
tract from Ciria C753)	14
work Relative to Subject Site	
work	
	19
gs	17
•	

1. Introduction

1.1 Background

AECOM were appointed by Bluescape Limited to undertake the infrastructure design in support of a Strategic Housing Development (SHD) planning application to An Bord Pleanála for a proposed residential development at Glounthaune, Co. Cork. This infrastructure report has been prepared to accompany the planning application for the proposed development. The proposed layout of the development is detailed in the planning drawings prepared by Deady Gahan Architects.

1.2 Site Location

The proposed development is located in Glounthaune Co. Cork, approximately 4km east of Cork City. The site covers an area of approximately 13.87 ha and is bounded to the south, west and north by residential properties and by greenfield to the east. The current site comprises of a greenfield site. The majority of the site is located to the north of L-2970, known locally as 'the Terrace with a small part of the site located to the south of The Terrace Road. There is a considerable variation in ground levels across the site which has been considered in developing the proposed layout. The site slopes from north to south from approximate +110 m OD Malin to +34.5 m OD Malin on The Terrace to approximately +3.30 m OD Malin.

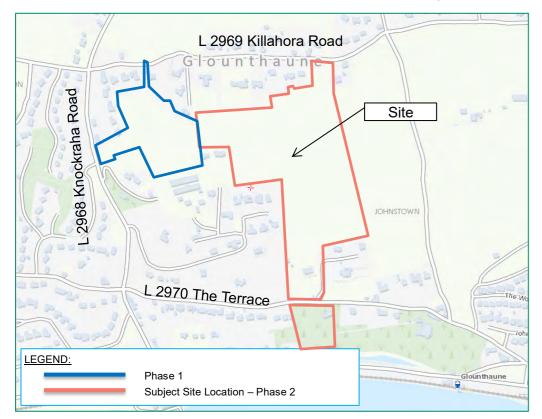


Figure 1-1 - Site Location - Glounthaune, Co. Cork

1.3 Proposed Development

The proposed development consists of the construction of a mixed-use residential development of 289 no. residential units consisting of 201 no. dwelling houses and 88 no. apartment/duplex units, a two storey creche, 4 no. ESB substations and all ancillary site development works at Lackenroe and Johnstown (townlands), Glounthaune, Co. Cork. The proposed development will be constructed on lands to the north and south of the public road, L-2970, known locally as 'the Terrace'. A portion of the site to the south of 'the Terrace' was formerly within Ashbourne Garden and is considered to be within the curtilage and attendant grounds of Ashbourne House, which is a Protected Structure (Ref 00498).

The proposed development to the north of 'the Terrace' provides for 260 no. residential units comprising of 196 no. dwelling houses, 64 no. apartment/duplex units and a two storey creche. The 196 no. dwelling houses includes 5 no. 4 bedroom detached dwellings, 44 no. 4 bedroom semi-detached dwellings, 12 no. 4 bedroom townhouses, 2 no. 3 bedroom detached dwellings, 22 no. 3 bedroom semi-detached dwellings, 47 no. 3 bedroom townhouses and 64 no. 2 bedroom townhouses. The 64 no. apartment/duplex units contains 5 no. 3 bedroom units, 32 no. 2 bedroom units and 27 no. 1 bedroom units contained in 6 no. three storey apartment buildings, with ancillary bicycle parking and bins stores.

The proposed development to the south of 'the Terrace' provides for 29 no. residential units comprising of 5 no. dwelling houses and 24 no. apartments. The 5 no. dwellings include 1 no. 3 bedroom detached dwelling, 2 no. 3 bedroom townhouses and 2 no. 2 bedroom townhouses. The proposed apartments are provided in a four-storey mixed-use building containing a ground floor community unit and a commercial unit with apartments at ground and upper floor levels comprising 3 no. 3 bedroom units, 7 no. 2 bedroom units and 14 no. 1 bedroom units with ancillary rooftop terrace, car parking, bicycle parking and bin stores.

Vehicular access to 2 no. dwellings in the lands to the north of 'the Terrace' will be provided via an upgraded entrance from 'the Terrace' with vehicular access to the remainder of dwellings in the lands to the north of 'the Terrace' via the signalised junction from the L-2968 and internal road network permitted by Cork County Council reference 17/5699 and An Bord Pleanála reference 300128-17. A separate secondary emergency access is also proposed from the L-2969 to the north.

Vehicular access to the 5 no. dwellings to the south of the 'the Terrace' will be via a new entrance from 'the Terrace' and the proposed apartment building will be accessed from Johnstown Close. The proposed development also makes provision for a pedestrian link from the proposed development north of 'the Terrace' to Johnstown Close via 'the Terrace' which will include a signalised pedestrian crossing and associated traffic calming measures on 'the Terrace'.

Ancillary site works include the demolition of 1 no. existing derelict dwelling house and associated outbuildings, landscaping and servicing proposals including the realignment of the existing pedestrian/cycle route on Johnstown Close, the undergrounding of existing overhead lines, upgrade of the storm and foul sewer network to the south and east of the subject lands along 'the Terrace' and Johnstown Close (L-3004).

Please refer to Constraints Study 1 and 2 for additional information outlining the existing site constraints and the development of the proposed development layout.

Figure 1-2 illustrates the extent and layout of the proposed development.

Existing Surface Water Drainage 2.1

Record drawings provided by Cork County Council indicate that there is no surface water sewers present in the immediate proximity of the site. A 400mm diameter surface water sewer is located approximately 420m east of the site and runs in a south easterly direction along the Terrace towards Johnstown CI. This surface water sewer was constructed circa 2017 as part of the adjoining "The Woods" Development. Figure 2-1 illustrates the route of this sewer. There is also an existing surface water drainage channel running parallel to the Terrace road. This channel discharges to an existing drainage network at the location noted on Figure 2-2.

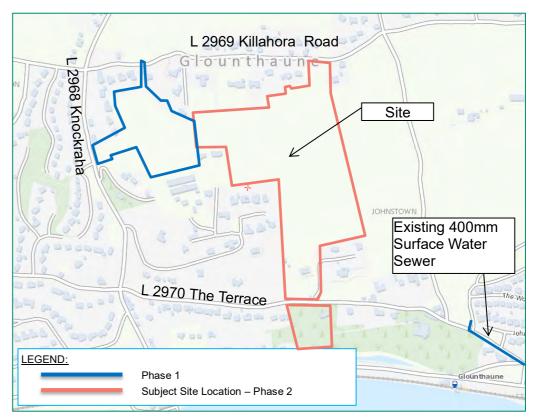


Figure 2-1 – Existing Surface Water Drainage Network

Figure 1-2 – Site Location and Layout

Figure 2-2 – Existing Channel on the Terrace/ Johnstown Close

These existing networks discharge to Lough Mahon through an existing 225 mm diameter pipe running perpendicular to the public roadway and train line. This sewer discharges through a flap valve, as illustrated in Figure 2-3.

Following discussions with Cork County Council (CCC), CCC have noted ongoing issues with this existing outfall (under Glounthaune Train Station) due to the limited capacity of the existing 225 mm diameter pipe. Figure 2-3 is an image of the existing outfall at Glounthaune Train Station (provided by Irish Rail).

Figure 2-3 – Existing Outfall at Glounthaune Train Station

During discussions with CCC, CCC noted that there is an additional surface water outfall to the east of Glounthaune Station, south of Johnstown Park. Cork County Council noted in April 2021 that investigation works were undertaken (2020) and dye testing has been undertaken (2021) to verify the route of the existing network from the public road way to the existing headwall. Figure 2-4 is an image of the existing outfall. This outfall discharges to Lough Mahon between the Cork – Middleton and Cork – Cobh railway lines as shown in Figure 2-5.

Figure 2-4 – Existing Outfall east of Glounthaune Train Station at Johnstown Park

Figure 2-5 – Location of Existing Outfall east of Glounthaune Train Station

2.2 **Proposed Surface Water Drainage**

It is proposed to provide a separate surface water drainage network within the development. To facilitate maintenance, the proposed surface water drainage network (sewers and attenuation tanks) have been located within roadways and other public areas within the proposed development. It is proposed to discharge surface water from the proposed site to the existing outfall located to the south of Johnstown Park In order to achieve this, it is proposed to lay a new 300mm surface water sewer from the southern boundary of the proposed development along 'the Terrace' and Johnstown Close and connect to the existing manhole located adjacent to the public road.

Figure 2-6 – Permeable Paving System (Extract from Ciria C753)

These systems will allow some form of storage for small rainfall events and can result in water evaporation and adsorption in small quantities, therefore there will be less run-off from these areas in small rainfall events thus mimicking the natural response for this catchment. As well as reducing the amount of run-off from the surface, permeable paving will slow down the rate of runoff from the pavement in extreme rainfall events contributing to attenuation of flows.

In addition, permeable paving will increase the quality of water which is intercepted by the system through filtration, biodegradation, pollutant adsorption and settlement and retention of solids, also the reduction in peak flows to the outfall will enhance settlement and biodegradation of pollutants.

2.2.1.2 Green Roof

Green roofs provide ecological, aesthetic and amenity benefits and intercept and retain rainfall, at source, reducing the volume of runoff and attenuating peak flows. Green roofs absorb most of the rainfall that they receive during normal rainfall events, although they will only contribute to attenuation of flows for larger events.

Additionally, green roofs treat surface water through removal of atmospherically deposited urban pollutants. Finally, green roofs may reduce heating (by adding mass and thermal resistance value) and cooling (by evaporative cooling) loads on a building.

The performance of green roofs in the summer is significant in preventing runoff from normal rainfall events due to high levels of evapotranspiration. Green roofs do not provide the same storage in winter as they tend to be saturated for a greater portion of time.

Extensive green roofs allow low growing, low maintenance plants consisting of self-sustaining mosses, sedums, succulents, herbs or grasses over a drainage layer and waterproofing membrane. Extensive roofs are usually only accessed for maintenance. Extensive green roofs typically have a 20-150 mm growing medium.

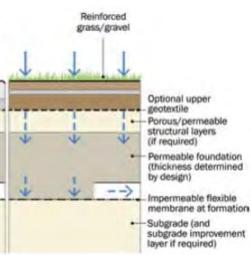
Intensive green roofs typically have a growing medium greater than 150 mm, allowing for a wider array of planting possibilities, including; grasses, shrubs and trees, as ground cover or within planters. Intensive green roofs are typically accessible as they require a higher level of maintenance. It is proposed that approximately 70% of roof areas are covered with brown or wildflower meadow. Refer to Figure 2-7 for typical detail of green roof.

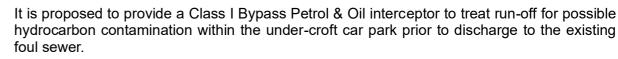
Please refer to the AECOM Drawing 60592432-ACM-00-00-DR-CE-10-0501, 0502 & 0503, 0504, 0505, 0506 and 0507 for more information on the surface water drainage network layouts.

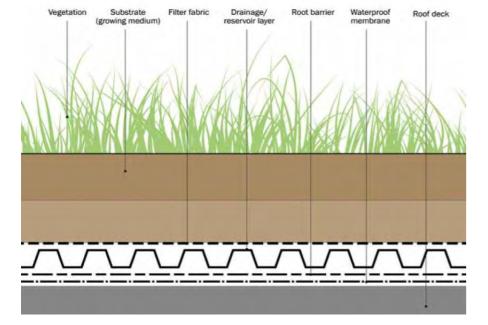
Run-off generated by roof areas, access roads, and car parking areas will be collected by the proposed surface water drainage network. The proposed network has been split in to the following catchments:

- Catchment 1: The proposed units at the northern end of the development will form Catchment 1. Run-off from this catchment will discharge at an attenuated rate of 31.7 l/s to the downstream network (MH S1-13).
- Catchment 2: The proposed units to the east and west of the proposed creche Catchment 2. Run-off from this catchment will discharge at an attenuated rate of 55.2 l/s to the downstream network (MH 1-30).
- Catchment 3: The proposed units to the south of the Central Parkland will form catchment 3. Run-off from this catchment will discharge at an attenuated rate of 75.3 l/s to the downstream network (MH S1-46).
- Catchment 4: The proposed units at the southern end of the development will form catchment 4. Run-off from this catchment will discharge at an attenuated rate of 83 l/s to the downstream network (MH S1-62).
- Catchment 5: The 5No. Units to the south of 'the Terrace' and the proposed apartment block will form catchment 5. It is proposed to provide a green roof on the proposed apartment block and permeable paving within the parking area to reduce the rate of discharge from this area.

The proposed surface water drainage network has been designed using the hydraulic modelling software MicroDrainage. The network has been designed to convey flows associated with a 1 in 5 year return period rainfall event and have been checked for flooding during a 1 in 100 year return period rainfall event. The hydraulic model indicates that flooding will not occur during a 1 in 100 year return period rainfall event.


2.2.1 Surface Water Attenuation


While it is proposed to discharge run-off from the proposed development to an area that is tidal in nature rather than a stream/ river, in order to reduce the rate of run-off from the proposed development it is proposed to limit discharge from the site to the greenfield rate (Qbar). The greenfield runoff rate was calculated for the site using soil type 4 (Clayey), a soil value of 0.45 and the Standard Annual Average Rainfall (SAAR) of 1077 mm as per the www.uksuds.com website. The Qbar Rate value for the proposed site area (12.7ha) is 101.5 I/s. Please refer to Appendix C for Q_{Bar} calculations.


It is proposed to attenuate run-off from the proposed development through attenuation tanks, permeable pavement and a green roof is proposed as part of the proposed apartment block.

2.2.1.1 Permeable Paving

Permeable pavement is proposed in the parking area and footpaths around the apartment block. Porous surfacing (paving block or open graded material) which can treat rainwater, at source, and allow infiltration through to an underlying porous subbase where water can be stored within the voids of the subbase before being slowly released to the drainage collection system through natural flow via the porous medium. Refer to Figure 2-6 for typical permeable paving at ground floor level.

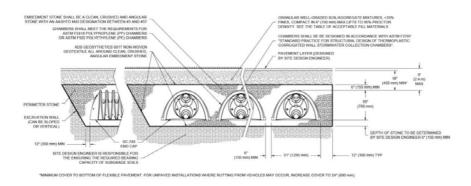
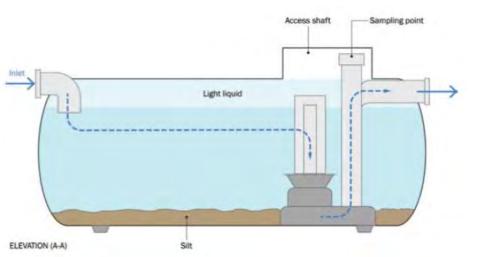


Figure 2-7 – Green Roof Layers (Extract from Ciria C753)

2.2.1.3 Attenuation Tanks

It is proposed to provide a Stormtech attenuation tank with SC-740 cells at the under-croft car park, totalling 18m3 of storage capacity. An impermeable bituminous liner Coletanche or similar surrounding the tank is proposed in order to protect the building's foundations. The Stormtech storage systems include a stone medium (the Stormtech chambers are surrounded by stone to manufacturer specification). Sediments are captured in the stone medium providing treatment by removing silts and some hydrocarbons from the runoff. Figure 2-8 shows a typical section of the tank.


Figure 2-8 – Attenuation Tank Typical Section

2.2.1.4 Petrol & Oil Interceptor

Petrol interceptors are widely used to avoid and prevent hazardous chemical and petroleum by-products from entering watercourses and public sewers. As standard, petrol interceptors shall be positioned close to the potential pollution source (to minimise emulsification of oils and their coating of sediments) and upstream of the connection point to the public network, within the private boundary.

There are two classes of systems:

- Class 1 device means that the resultant effluent should contain 5mg/l hydrocarbon content or less under standard test conditions;
- Class 2 can contain up to 100mg/l in their discharge and are appropriate where drainage • is to a foul sewer.

Figure 2-9 – Typical Petrol Interceptor detail (Extract from Ciria C753)

2.2.2 **Design Criteria**

The design of residential developments is be based on Section 3.5 of the Department of Environment, Heritage and Local Government Recommendations for Site Development Works for Housing Areas and the requirements of Cork County Council.

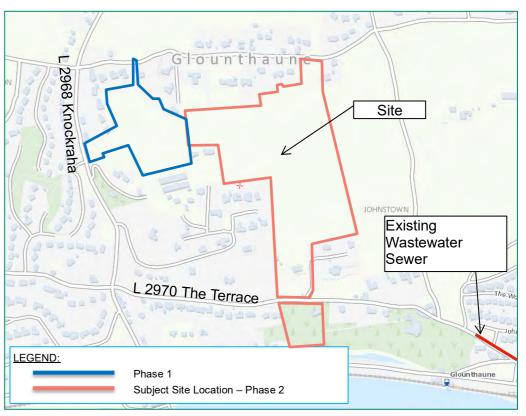
The following design standards and guidelines have been folloed in the design of the proposed surface water drainage network:

- BS EN 752 Drains and sewer system outside buildings, ٠
- Greater Dublin Strategic Drainage Study (GDSDS) Volume 2 New Developments,
- BS EN 858-2- Separator System for Light Liquids (e.g. oil and petrol),
- Pipe network has been designed to ensure no surcharging during a 1 in 5 year return period rainfall event.
- No pipe flooding during a 1 in 100-year return period rainfall event, ٠
- Surface water storage sized based on a 1 in 100-year return period rainfall event,
- An additional 20% has been allowed for climate change in relation to rainfall intensities.
- The following design criteria have been used in the design of the proposed surface water drainage network:
 - Carrier pipe network 1.0m/s to 3.0m/s, _
 - Colebrook White roughness value of 0.6mm for all pipework,
 - Time of entry: 4 minutes,
 - Return Period: 5 years,
 - Met Eireann rainfall data for site,
 - M5/60 = 18.8 mm,
 - Ratio r = 0.264.

2.3 **Drainage Maintenance Inspection Checklist**

Maintenance is suggested to be carried out every 6 months to ensure the system is operating correctly. The maintenance for this site consists of inspection and assessment, however if issues arise during inspection remedial measures must be taken. The client is not required to carry out the maintenance themselves but they must ensure that a competent contractor is employed. An example maintenance record and checklist can be seen in Appendix D

Accidental spillages or pollution into the system must be dealt with by a competent contractor. Pollutants will need to be pumped from the system and correctly disposed of.


Foul Water Drainage 3.

3.1 **Existing Foul Water Drainage**

There are no existing wastewater drainage networks within or to the north of the subject site. There are a number of existing combined drainage networks in the area to the west and south of the subject site:

- Existing combined drainage network running in the Knockraha road to the west of the • subject site,
- Existing combined network running east along 'the Terrace' at the entrance to The ٠ Woods residential development and onto Johnstown Park,
- Existing combined network running along the Old Youghal Road at Johnstown Close. •

A 225mm diameter surface water sewer is located approximately 420m from the southern boundary of the site and is running in an easterly direction along the Terrace towards Johnstown Close. This foul water sewer was constructed circa 2017 as part of the adjoining "The Woods" Development. Although this sewer is not on current Irish Water record maps AECOM has received confirmation from Irish Water that they deem this sewer network to be in their ownership, due to the fact it is connected to an Irish Water asset downstream.

Figure 3-1 – Existing Wastewater Drainage Network Relative to Subject Site

The existing networks running on the Terrace/ Johnstown Park and Johnstown Close discharge to an existing pumping station on Johnstown Close (Johnstown Pumping Station). The existing pumping station is located in the walkway to the east of Fitzpatrick's Shop/ existing apartments. Figure 3-2 illustrates the extent of the existing wastewater drainage networks in the vicinity of the subject site.

Source	Unit	Quantity	Flow	Daily Flow	DWF	DWF	Peak Flow	
Commercial and Amenity Units (ground floor adjacent to Fitzpatrick's Shop)	Area (ha)	0.0735	0.16	1,016.06	1.0161	0.012	0.05	4.5DWF
Total				131,453.14	131.45	1.52	9.10	

Figure 3-2 – Existing Wastewater Drainage Network

3.2 **Proposed Foul Water Drainage**

A Pre-Connection Enquiry Form has been issued to Irish Water in relation to the feasibility of servicing the proposed development with a foul water connection. Irish Water confirmed that the proposed wastewater connection to the Irish Water network can be facilitated subject to a valid connection agreement being put in place. Please refer to Appendix A for the Irish Water Confirmation of Feasibility.

It is proposed to discharge the wastewater generated by the proposed development north of 'the Terrace' by gravity into the 225mm diameter public foul sewer running along 'the Terrace'. In order to achieve this, it is proposed to lay a new 225mm foul water sewer from the southern boundary of the proposed development along the terrace and connect to the existing 225mm foul water system. It is proposed to discharge the wastewater generated by the proposed development south of 'the Terrace' by gravity to the existing network to the west of the proposed apartment block. Please refer to the AECOM Drawing No. Drawing 60592432-ACM-00-00-DR-CE-10-0501, 0502, 0503 & 0504 for the foul water drainage layout.

Foul water drainage has been designed in accordance with the Irish Water Wastewater Code of Practice Appendix using Innovyze MicroDrainage software (refer to Appendix E for detailed design calculations). The design guidelines of the Environmental Protection Agency (EPA) Wastewater Treatment Manual, "Treatment Systems for Small Communities, Business, Leisure Centres and Hotels" were used to estimate the proposed hydraulic foul water loading rates. The estimated flows are presented in Table 1.

Table 1. Proposed Foul Water Hydraulic Loadings

Source	Unit	Quantity	Flow	Daily Flow	DWF	DWF	Peak Flow	
			(litres/day/unit or litres/sec/ha)	(litres/ day)	m³/day	litres/ sec	litres/ sec	
Residential Units @ 450 I/day/unit	unit	289	450	130,050.00	130.05	1.51	9.03	6DWF
Creche	Area (ha)	0.0280	0.16	387.07	0.3871	0.004	0.02	4.5DWF

Project number: 60592432

Water Supply 4.

Existing Water Supply 4.1

Record drawings provided by Irish Water (refer to Figure 4-1) indicate that there is an existing 150mm watermain running along the north of the site. It also indicates a 100mm watermain running along the terrace at the southern boundary of the proposed development (see Appendix F for full records).

Figure 4-1 – Existing Watermain

Proposed Water Supply 4.2

A Pre-Connection Enguiry Form has been issued to Irish Water in relation to the feasibility of servicing the proposed development with a water supply connection. Irish Water confirmed that the proposed water supply connection to the Irish Water network can be facilitated subject to a valid connection agreement being put in place. Please refer to Appendix A for the Irish Water Confirmation of Feasibility.

It is proposed to service the proposed development via a new 150mm diameter watermain connection off the 150mm diameter watermain running along the northern boundary and to also connect to the 100mm diameter watermain running along the southern boundary indicated on the AECOM Drawing 60592432-ACM-00-00-DR-CE-10-2701, 2702, 2703 & 2704.

The internal water supply network is based on the Department of the Environment 'Recommendation for Site Development Works', the requirements of Irish Water and the Technical Guidance Document – Part B of the Building Regulations 2006:

- The development shall have a bulk water meter (exact location to be agreed with Irish Water) in accordance with Irish Water Code of Practice for Water Infrastructure Section 3.15.4.
- All apartments and similar properties shall have meters installed internally within the premises in accordance with the Building Control Authority's requirements and subject

to review by Irish Water as per Irish Water Code of Practice for Water Infrastructure Section 3.15.2.

- Hydrants are positioned within 46m from all the proposed buildings
- Sluice valves are positioned to isolate the watermain
- An air valve is proposed at the high point within the internal water supply network
- A scour valve is proposed the low point within the internal water supply network

Table 2 presents the estimated water demand submitted to Irish Water as part of the Pre-Connection Enquiry Form.

Table 2. Proposed Water Demand

Source	Unit	Quantity	Flow	Daily	Daily	Daily Demand	Average day/ peak week demand (DD*1.25)	Peak week demand (Average day/ peak week demand*5)
			(litres/day/unit or litres/sec/ha)	(litres/ day)	m³/day	litres/ sec	litres/ sec	litres/ sec
Residential Units @ 450 I/day/unit	unit	289	450	130,050.00	130.05	1.51	1.882	9.408
Creche	Area (ha)	0.0280	0.16	387.07	0.3871	0.004	0.006	0.028
Commercial and Amenity Units (ground floor adjacent to Fitzpatrick's Shop)	Area (ha)	0.0735	0.16	1,016.06	1.0161	0.012	0.015	0.074
Total				131,453.14	131.45	1.52	1.90	9.51

To further reduce the water demand on Local Authority water supplies and to reduce the foul discharge from the development, water conservation measures will be incorporated in the sanitary facilities throughout the development, e.g. dual flush toilets.

Appendix A - Irish Water COF

Aileen Prendergast

1st Floor Montrose House **Carrigaline Road** Douglas Co. Cork

28 September 2021

Re: CDS21006136 pre-connection enquiry - Subject to contract | Contract denied

Connection for Multi/Mixed Use Development of 292 unit(s) at Lackenroe, Glouthaune, Cork

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Lackenroe, Glouthaune, Cork (the Premises). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME <u>THIS IS NOT A CONN</u> CONNECTION(S) TO T
Water Connection	Feasible without infrastruc
Wastewater Connection	Feasible Subject to upgra
Water Connection	N/A
Wastewater Connection	In order to accommodate wastewater network at the the length of the network I site to the existing Irish W any plans to extend its ne with the connection you w Please note that no upgra required to accommodate development.
Strategic Housing Development	Irish Water notes that the to the Strategic Housing D

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Uisce Éi reann Bosca OP 448 Oifig Sheach ad ta na **Cathrach Theas** Cathair Chorcaí

Irish Water PO Box 448. South City Delivery Office, Cork City.

www.water.ie

E OF PRE-CONNECTION ENQUIRY

INECTION OFFER. YOU MUST APPLY FOR A THE IRISH WATER NETWORK(S) IF YOU WISH TO PROCEED.

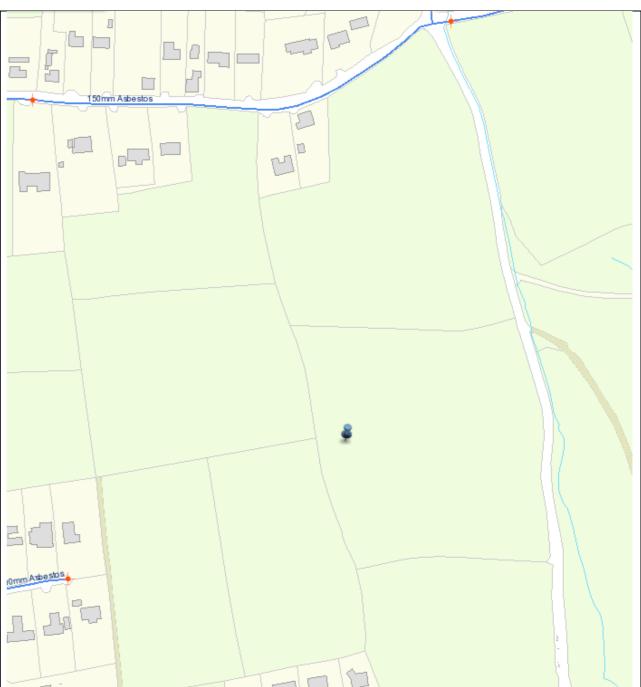
cture upgrade by Irish Water

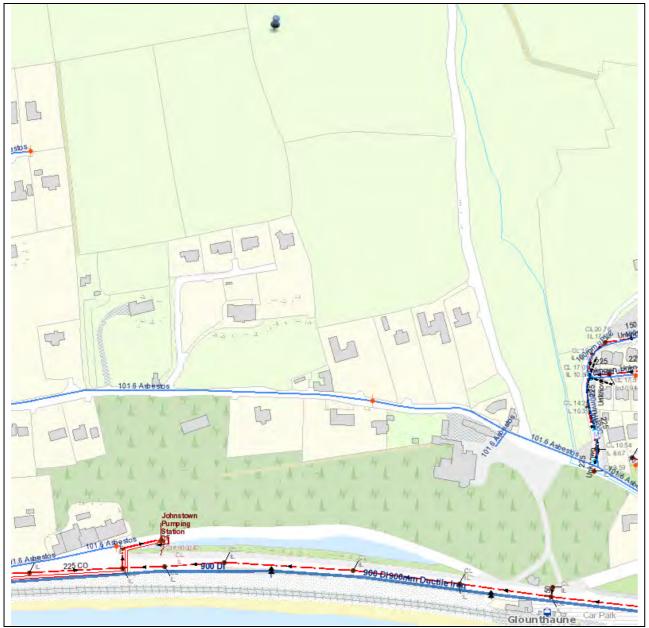
ades

COMMENTS

the proposed connection to Irish Water e Premises, upgrade works are required to extend by approximately 400m on The Terrace from your Vater network. Irish Water currently does not have etwork in this area. Should you wish to progress will be required to fund this network extension.

ades to the Johnstown Pumping Station are e the proposed 30 units at the South of the


scale of this development dictates that it is subject Development planning process. Therefore: in


HEV012

advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services.

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- 3) The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Dario Alvarez from the design team on + 353 2254621 or email dalvarez@water.ie For further information, visit www.water.ie/connections.

Yours sincerely,

Monne Maeris

Yvonne Harris

Head of Customer Operations

2) This feedback does not constitute a contract in whole or in part to provide a connection to any

4) A Connection Agreement will be required to commencing the connection works associated with

5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.

7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.

You are advised to contact the relevant Local Authority to discuss the management or disposal of

Appendix B – Irish Water Statement of Design Acceptance (SODA)

Aileen Prendergast 1st Floor Montrose House Carrigaline Road, Douglas Cork

21 October 2021

Re: Design Submission for Glounthaune, Cork, Co.Cork (the "Development") (the "Design Submission") / Connection Reference No: 0850513420

Dear Aileen Prendergast,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at www.water.ie/connections. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(https://www.cru.ie/document group/irish-waters-water-chargesplan-2018/).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "Self-Lay Works"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Dario Alvarez Email: dalvarez@water.ie

Yours sincerely,

M Duyse

Maria O'Dwyer **Connections and Developer Services**

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Uisce Éireann Bosca OF 448 Oifig Sheachadta na **Cathrach Theas** Cathair Chorca

Irish Water PO Box 448. South City Delivery Office, Cork City.

www.water.ie

Appendix A

Document Title & Revision

- 60592432-ACM-00-00-DR-CE-10-2701
- 60592432-ACM-00-00-DR-CE-10-2702
- 60592432-ACM-00-00-DR-CE-10-2703
- 60592432-ACM-00-00-DR-CE-10-2704 Rev. B
- 60592432-ACM-00-00-DR-CE-10-0501
- 60592432-ACM-00-00-DR-CE-10-0501
- 60592432-ACM-00-00-DR-CE-10-0502
- 60592432-ACM-00-00-DR-CE-10-0503
- 60592432-ACM-00-00-DR-CE-10-0504
- 60592432-ACM-00-00-DR-CE-10-0505 Rev. B
- 60592432-ACM-00-00-DR-CE-10-0506
- 60592432-ACM-00-00-DR-CE-10-0507
- 20210820 Foul Long Sections

For further information, visit www.water.ie/connections

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

Appendix C - Glounthaune QBar calcs

Mean Annual Flood Flow Rate Equation for Greenfield Catchments IH124

(Based on Institute of Hydrology report No. 124)

Project title:	Glounthaune SHD - Catchment 1	
Project no .:		
Designed:		Date:

Q Bar = 0.00108 x Area ^{0.89} x SAAR^{1.17} x Soil^{2.17}

Where			Units	Table	1			
Q Bar	=	Mean Annual Peak Flow	m³/s	Soil	WRAP	Runoff	Soil value	Soil Characteristics
Area	=	Catchment area	km ²	1	Very high	Very low	0.15	Sandy, well drained
SARR	=	Standard Annual Average Rainfall	mm	2	High	Low	0.3	Intermediate soils (sandy)
Soil	=	Soil Index	-	3	Moderate	Moderate	0.4	Intermediate soils (silty)
				4	Low	High	0.45	Clayey, poorly drained
				5	Verv low	Verv hiah	0.5	Steel, rocky areas

Area description: residential

Soil cha	racteristic		Soil type (See Tabl > Soil index =	e 1)	0.45	4	• •	ey, poorly drained) SI report
Area	=	0.5	km ²	(43717	m²)	Where developments are smaller than 50 ha, the analysis for determining the peak greenfield discharge rate should use 50 ha in the formula and linearly interpolate the flow rate value based on the ratio of the development to 50 ha.(Ref: Interim Code of Practice for Sustainable Drainage
SAAR	=	1077	mm					Refer to Annual Average Rainfall Diagram on following spreadsheet
Q Bar =	0.3636	m³/s	(Based on 50 ha)					
	=	363.64	l/s					

or = 7.27 l/s/ha

Linear Interpolation of Q Bar based on ratio of development to 50 ha

Peak greenfield discharge rate, Q _{Bar} =	31.79	l/s
Growth Curve		
Return Period Q _{t1} :	1	year
Growth Factor for Q _{t1} :	0.85	
Allowable Discharge for 1 year return period:	27.03	l/s
Return Period Q _{t2} :	10	year
Growth Factor for Q _{t2} :	1.33	
Allowable Discharge for 10 year return period:	42.29	l/s
Return Period Q _{t2} :	30	year
Growth Factor for Qt2:	1.58	
Allowable Discharge for 30 year return period:	50.24	l/s
Return Period Q _{t3} :	100	year
Growth Factor for Q _{t3} :	1.84	-
Allowable Discharge for 100 year return period:	58,50	l/s

Mean Annual Flood Flow Rate Equation for Greenfield Catchments IH124

(Based on Institute of Hydrology report No. 124)

Date:	
	Date:

Q Bar = 0.00108 x Area ^{0.89} x SAAR^{1.17} x Soil^{2.17}

Where							Units	Table	1			
Q Bar	=	Mean An	nual Peak Flow				m³/s	Soil	WRAP	Runoff	Soil value	Soil Characteristics
Area	=	Catchme	nt area				km ²	1	Very high	Very low	0.15	Sandy, well drained
SARR	=	Standard	Annual Average I	Rainfall			mm	2	High	Low	0.3	Intermediate soils (sandy)
Soil	=	Soil Index	1				-	3	Moderate	Moderate	0.4	Intermediate soils (silty)
								4	Low	High	0.45	Clayey, poorly drained
								5	Very low	Very high	0.5	Steel, rocky areas
Area des	criptic	on:	residential									
Soil char	acteris	stics:	Soil type (See	Table 1)		4	(Clayey, poo	rly drained)				
		=	> Soil index =		0.45		See SI repo	rt				
Area	=	0.5	km ²	(75917	m²	, disc	Where developments are smaller than 50 ha, the analysis for determining the peak greenfield discharge rate should use 50 ha in the formula and linearly interpolate the flow rate value based on the ratio of the development to 50 ha.(Ref: Interim Code of Practice for Sustainable Drainage				
SAAR	=	1077	mm				Refe	Refer to Annual Average Rainfall Diagram on following spreadsheet				

Q Bar = 0.3636 m³/s (Based on 50 ha)

=	363.64	l/s
		or
=	7.27	l/s/ha

Linear Interpolation of Q Bar based on ratio of development to 50 ha

Peak greenfield discharge rate, Q _{Bar}	= 55.21	l/s
Growth Curve		
Return Period Q _{t1} :	1	year
Growth Factor for Q _{t1} :	0.85	
Allowable Discharge for 1 year return period	d: 46.93	l/s
Return Period Q _{t2} :	10	year
Growth Factor for Q ₁₂ :	1.33	
Allowable Discharge for 10 year return perio	od: 73.43	l/s
Return Period Q _{t2} :	30	year
Growth Factor for Q _{t2} :	1.58	
Allowable Discharge for 30 year return perio	od: 87.24	l/s
Return Period Q _{t3} :	100	year
Growth Factor for Q _{t3} :	1.84	
Allowable Discharge for 100 year return per	iod: 101.59	l/s

Mean Annual Flood Flow Rate Equation for Greenfield Catchments IH124

(Based on Institute of Hydrology report No. 124)

Project title:	Glounthaune SHD - Catchment 3	
Project no .:		
Designed:		Date:

Q Bar = 0.00108 x Area ^{0.89} x SAAR^{1.17} x Soil^{2.17}

Where			Units	Table	1			
Q Bar	=	Mean Annual Peak Flow	m³/s	Soil	WRAP	Runoff	Soil value	Soil Characteristics
Area	=	Catchment area	km ²	1	Very high	Very low	0.15	Sandy, well drained
SARR	=	Standard Annual Average Rainfall	mm	2	High	Low	0.3	Intermediate soils (sandy)
Soil	=	Soil Index	-	3	Moderate	Moderate	0.4	Intermediate soils (silty)
				4	Low	High	0.45	Clayey, poorly drained
				5	Very low	Very high	0.5	Steel rocky areas

residential Area description:

Soil char	acteristic		Soil type (See Table > Soil index =	e 1)	0.45	4	```	ey, poorly drained) SI report
Area	=	0.5	km ²	(103517	m²)	Where developments are smaller than 50 ha, the analysis for determining the peak greenfield discharge rate should use 50 ha in the formula and linearly interpolate the flow rate value based on the ratio of the development to 50 ha.(Ref: Interim Code of Practice for Sustainable Drainage
SAAR	=	1077	mm					Refer to Annual Average Rainfall Diagram on following spreadsheet
Q Bar =	0.3636	m³/s	(Based on 50 ha)					
Γ	=	363.64	l/s					

=	363.64	l/s	
	c	or	
=	7.27	l/s/ha	

Linear Interpolation of Q Bar based on ratio of development to 50 ha

Peak greenfield discharge rate, Q _{Bar} =	75.29	l/s
Growth Curve		
Return Period Q _{t1} :	1	year
Growth Factor for Q _{t1} :	0.85	
Allowable Discharge for 1 year return period:	63.99	l/s
Return Period Q _{t2} :	10	year
Growth Factor for Q _{t2} :	1.33	
Allowable Discharge for 10 year return period:	100.13	l/s
Return Period Q _{t2} :	30	year
Growth Factor for Q _{t2} :	1.58	
Allowable Discharge for 30 year return period:	118.95	l/s
Return Period Q _{t3} :	100	year
Growth Factor for Q _{t3} :	1.84	
Allowable Discharge for 100 year return period:	138.53	l/s

Mean Annual Flood Flow Rate Equation for Greenfield Catchments IH124

(Based on Institute of Hydrology report No. 124)

Project title:	Glounthaune SHD - Catchment 4	
Project no .:		
Designed:		Date:

(Complete figures in **blue** only)

Q Bar = 0.00108 x Area ^{0.89} x SAAR^{1.17} x Soil^{2.17}

Where			Units	Table	1			
Q Bar	=	Mean Annual Peak Flow	m ³ /s	Soil	WRAP	Runoff	Soil value	Soil Characteristics
Area	=	Catchment area	km ²	1	Very high	Very low	0.15	Sandy, well drained
SARR	=	Standard Annual Average Rainfall	mm	2	High	Low	0.3	Intermediate soils (sandy
Soil	=	Soil Index	-	3	Moderate	Moderate	0.4	Intermediate soils (silty)
				4	Low	High	0.45	Clayey, poorly drained
				5	Very low	Very high	0.5	Steel, rocky areas

Area description: commercial

Soil char	acteristi		Soil type (See Ta > Soil index =	ble 1) 0.45	4		ey, poorly drair SI report
Area	=	0.5	km ²	(114427	m²)	Where deve discharge r on the ratio
SAAR	=	1077	mm				Refer to An

Q Bar = 0.3636 m³/s (Based on 50 ha)

=	363.64	l/s	
	0	r	
=	7.27	l/s/ha	

Linear Interpolation of Q Bar based on ratio of development to 50 ha

	Peak greenfield discha	arge rate, Q _{Bar}	=	83.22	l/s
--	------------------------	-----------------------------	---	-------	-----

Growth Curve		
Return Period Q _{t1} :	1	year
Growth Factor for Q _{t1} :	0.85	
Allowable Discharge for 1 year return period:	70.74	l/s
Potum Pariad Q	10	
Return Period Q _{t2} :	10	year
Growth Factor for Q _{t2} :	1.33	
Allowable Discharge for 10 year return period:	110.68	l/s
Return Period Q _{t2} :	30	year
Growth Factor for Qt2:	1.58	
Allowable Discharge for 30 year return period:	131.49	l/s
Return Period Q _{ta} :	100	VOOR
		year
Growth Factor for Q _{t3} :	1.84	
Allowable Discharge for 100 year return period:	153.13	l/s

ained)

evelopments are smaller than 50 ha, the analysis for determining the peak greenfield e rate should use 50 ha in the formula and linearly interpolate the flow rate value based tio of the development to 50 ha.(Ref: Interim Code of Practice for Sustainable Drainage

Refer to Annual Average Rainfall Diagram on following spreadsheet

Appendix D – Glounthaune Drainage Surface Water Network Details

AECOM			Page 0
Midpoint	Glour	thaune	
Alencon Link	Co. C	lork	
Basingstoke, RG21 7PP	Propo	sed Drainage	Micco
Date 10/08/2021	Desig	ned by JC	Desinado
File GLOUNTHAUNE UPDATED	Check	ed by AP	Drainage
Innovyze	Netwo	rk 2020.1	
Pipe Sizes S	TANDARD 1	ria for Storm Manhole Sizes STANDARD Scotland and Ireland	
Return Period (years			2 (%) 100
M5-60 (mr	n) 18.800	Add Flow / Climate Change	e (%) 20
	R 0.264		
Maximum Rainfall (mm/h)	,		
Maximum Time of Concentration (mins			
Volumetric Runoff Coefi		Min Vel for Auto Design only Min Slope for Optimisation	

M			Page	0
point	Gloun	thaune		
ncon Link	Co. C	ork	4	~
ingstoke, RG21 7PP	Propo	sed Drainage	Mic	10
e 10/08/2021	Desig	ned by JC		
e GLOUNTHAUNE UPDATED	Check	ed by AP	DIG	inage
ovyze	Netwo	rk 2020.1		
Design	Crite	<u>Modified Rational Method</u> ria for Storm Manhole Sizes STANDARD		
FSR Rainfall M	Model -	Scotland and Ireland		
Return Period (years)	5	PIMP	(%)	100
		Add Flow / Climate Change		
		Minimum Backdrop Height		
Maximum Rainfall (mm/hr)				
ximum Time of Concentration (mins)				
-		Min Vel for Auto Design only (
Volumetric Runoff Coeff.	0.750	Min Slope for Optimisation (⊥:X)	500
Design		Tanal Gaffita		

Designed with Level Soffits

Time Area Diagram for Storm

				Time (mins)									
0-4	0.000	4-8	0.000	8-12	0.658	12-16	1.623	16-20	1.885	20-24	0.680	24-28	0.004

Total Area Contributing (ha) = 4.851

Total Pipe Volume $(m^3) = 423.477$

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	31.308 57.547		30.0 30.0	0.052 0.036	5.00 0.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit	ð ď
S2.001	38.663 6.184 39.985	0.206	30.0 30.0 30.0	0.103 0.000 0.149 <u>Ne</u>	5.00 0.00 0.00 twork	0.0	0.600 0.600 0.600 <u>Table</u>	0 0	225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0 5 5

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)			Vel (m/s)	Cap (1/s)	Flow (l/s)	
S1.000	67.94	5.22	107.300	0.052	0.0	0.0	1.9	2.40	95.3	11.4	
S1.001	66.09	5.62	106.256	0.087	0.0	0.0	3.1	2.40	95.3	18.8	
~~ ~~~	<u> </u>		100.005					~ ~ ~	05 0	00 C	
S2.000	67.69	5.27	106.325	0.103	0.0	0.0	3.8	2.40	95.3	22.6	
S2.001	67.49	5.31	105.036	0.103	0.0	0.0	3.8	2.40	95.3	22.6	
S2.002	66.22	5.59	104.830	0.252	0.0	0.0	9.0	2.40	95.3	54.2	

©1982-2020 Innovyze

ECOM											Pag	ge 1
idpoin	t				Glo	ounthaune						
lencon	Link				Co	. Cork					-	
asings	toke,	RG2	1 7PP		Pro	oposed Dra	ainag	e				
ate 10						signed by	2					ICLO
			א ממוזי	ਸਦਾਨ							Dr	ainac
ile GL		AUNE	UPDA	IED		ecked by A						
nnovyz	е				Ne	twork 2020).1					
				Networ	k Desi	qn Table	for S	torm				
	- + 1		1 01			-				6	-	
PN	Lengt. (m)	n Fal (m	-	be I.Area () (ha)		Base Flow (l/s)	k (mm)	HYD SECT	(mm)	Section	on Type	e Auto Design
S2.003	6.47	9 0.2	16 30.	0.000	0.00	0.0	0.600	0	225	Pipe/	Conduit	.
S1.002	65.41	8 2.1	81 30.	0 0.062	0.00	0.0	0.600	0	225	Pipe/	Conduit	.
s3.000	51.12	8 1.7	04 30.	0 0.125	5.00	0.0	0.600	0	225	Pipe/	Conduit	- 1
S3.001	5.93	7 0.0	30 200		0.00	0.0	0.600	0		-	Conduit	
S3.002	34.16	5 0.4	50 75.	9 0.051	0.00	0.0	0.600	0	225	Pipe/	Conduit	
01 000	10 40	4 0 -	4.0 4.0	0 0 000	0 00	^ ^	0		200	D.' (0 1	-
S1.003					0.00		0.600	0		-	Conduit	
S1.004 S1.005					0.00		0.600	0		-	Conduit Conduit	
S1.005					0.00		0.600	0		-	Conduit	
S1.007					0.00		0.600	0		-	Conduit	
S1.008					0.00		0.600	0		-	Conduit	
S1.009	29.69	9 0.9	00 33.	0.000	0.00	0.0	0.600	0	300	Pipe/	Conduit	
S1.010	8.42	7 0.2	55 33.	0.000	0.00	0.0	0.600	0	300	Pipe/	Conduit	
S4.000	29.22	3 1.2	82 22.	8 0.024	5.00	0.0	0.600	0	225	Pipe/	Conduit	ð
S5.000	37.64	2 1.0	75 35.	0.088	5.00	0.0	0.600	0	225	Pipe/	Conduit	ð
S4.001	29.08	7 1.2	76 22.	8 0.024	0.00	0.0	0.600	0	225	Pipe/	Conduit	ð
				Ne	etwork	<u>Results 1</u>	<u>able</u>					
PN		in	T.C.	US/IL 2				Add			Cap	Flow
			(mins)	(m)	(ha)				s)		(1/s)	
S2.0	03 6	6.02		103.497	0.252	0.0	0.0)	9.0	2.40	95.3	54.2
S1.0	02 6	4.07	6.09	102.755	0.401	. 0.0	0.0)	13.9	2.40	95.3	83.5
S3.0		7.29		101.700	0.125				4.6			
S3.0		6.79		99.996	0.146				5.3			
S3.0	02 6	5.11	5.84	99.966	0.197	0.0	0.0)	6.9	1.50	59.7	41.6
S1.0	03 6	3.56	6.22	99.441	0.607	0.0	0.0)	20.9	2.43	172.0	125.3
S1.0		2.48		99.001					22.2		172.0	
S1.0		1.57		96.788					22.2		194.1	
S1.0	06 6	1.43	6.77	95.588	0.662	0.0	0.0)	22.2	2.75	194.1	133.2
S1.0		0.32		93.863					22.3		194.1	
S1.0		9.77		91.185					24.2		194.1	
S1.0		9.15		89.090	0.748				24.2		194.1	
S1.0	10 5	8.98	7.46	88.190	0.748	0.0	0.0		24.2	2.74	194.0	145.3
S4.0	00 6	8.13	5.18	105.355	0.024	0.0	0.0)	0.9	2.75	109.4	5.3
S5.0	00 6	7.63	5.28	105.150	0.088	0.0	0.0)	3.2	2.22	88.2	19.4
S4.0	01 6	6.81	5.46	103.200	0.136	5 O.O	0.0)	4.9	2.75	109.4	29.6

													Pa	ge 2
lidpoin							ounthau	ne						
lencon							. Cork							4
asings	-		21 '	7PP			oposed 1			е			M	icro
ate 10	/08/2	2021				Des	signed 1	ру	JC					raina
ile GL	OUNTH	IAUN	E UI	PDAT	ED	Che	ecked by	γA	ΔP					
nnovyz	е					Net	work 2	20).1					
					Network	Desi	gn Tabl	e f	for St	torm				
PN	Lengt (m)		11 m)	Slope (1:X)	e I.Area (ha)	T.E. (mins)	Base Flow (1/	s)	k (mm)	HYD SECT	DIA (mm)	Section	on Type	e Auto Desig
S4.002	45.69	8 1.	632	28.0	0.039	0.00	0	.0	0.600	0	300	Pipe/	Conduit	t 👌
S4.003				29.9	0.000	0.00	0	.0	0.600	0	300	Pipe/	Conduit	t 🥳
S4.004				67.7		0.00			0.600	0			Conduit	t 💣
S4.005				80.0		0.00			0.600	0			Conduit	
S4.006 S4.007				80.0		0.00			0.600	0			Condui† Condui†	
S4.007				70.0		0.00			0.600	0			Conduit	
S4.009				80.0		0.00			0.600	0			Conduit	
S4.010	54.44	8 1.9	959	27.8	0.125	0.00			0.600	0	300	Pipe/	Conduit	t 🥳
S4.011				27.8		0.00			0.600	0			Conduit	t 💣
S4.012 S4.013				27.8		0.00			0.600	0		-	Conduit	
S4.013 S4.014				27.8		0.00			0.600	0			Condui† Condui†	
S4.014 S4.015				50.0		0.00			0.600	0			Conduit	
					0.146	0.00			0.600	0			Conduit	
S1.011	24.15	7 0.3	121	200.0	0.000	0.00	0	0	0.600	0	525	Pipe/	Conduit	_
					0.000	0.00	0	• 0	0.000	0	525	1 Tbc/	COndur	•
\$6.000	63.01	1 1.8										-		Ŭ
S6.000 S6.001			800	35.0		5.00 0.00	0	.0	0.600	0	225	Pipe/	Conduit Conduit	t 👌
	17.52	6 0.	800 531	35.0 33.0	0.083	5.00	0	.0	0.600	0	<mark>225</mark> 225	Pipe/	Conduit	t 👌 t 💣
S6.001	17.52 24.23 R	6 0.3 8 0.3	800 531 242 T.	35.0 33.0 100.0	0.083 0.054 0.013 <u>Ne</u> US/IL Σ	5.00 0.00 0.00 twork	0 0 0 <u>Results</u> Σ Base	.0 .0 .0 T	0.600 0.600 0.600 able Foul	0 0 0	225 225 225 Flow	Pipe/ Pipe/ Pipe/	Conduit Conduit Conduit Cap	flow
S6.001 S6.002 PN	17.52 24.23 R (mm	6 0.3 8 0.3 ain a/hr)	800 531 242 T. (mi	35.0 33.0 100.0 C. .ns)	0.083 0.054 0.013 <u>Ne</u> US/IL Σ (m)	5.00 0.00 0.00 <u>twork</u> : I.Area (ha)	0 0 Results Σ Base Flow (1,	.0 .0 .0 T	0.600 0.600 0.600 <u>able</u> Foul (1/s)	0 0 0 Add (1,	225 225 225 Flow /s)	Pipe/ Pipe/ Pipe/ Vel (m/s)	Conduit Conduit Conduit Conduit Cap (1/s)	Flow (1/s)
S6.001 S6.002 PN S4.00	17.52 24.23 R (mm	6 0.3 8 0.3 ain a/hr) 55.67	800 531 242 T. (mi	35.0 33.0 100.0 C. ns)	0 0.083 0 0.054 0 0.013 <u>Ne</u> US/IL Σ (m)	5.00 0.00 0.00 <u>twork</u> : I.Area (ha) 0.175	0 0 Results E Base Flow (1,	.0 .0 .0 <u>T</u> , 2 (s)	0.600 0.600 <u>able</u> Foul (1/s) 0.0	0 0 Add (1	225 225 225 Flow /s) 6.2	Pipe/ Pipe/ Pipe/ Vel (m/s) 2.98	Conduit Conduit Conduit Conduit Cap (1/s) 210.8	Flow (1/s) 37.4
S6.001 S6.002 PN	17.52 24.23 R (mm 02 6 03 6	6 0.3 8 0.3 ain a/hr)	800 531 242 T. (mi 5 5	35.0 33.0 100.0 C. ns) 5.71 1	0.083 0.054 0.013 <u>Ne</u> US/IL Σ (m)	5.00 0.00 0.00 <u>twork</u> : I.Area (ha)	0 0 Results E Base Flow (1,	.0 .0 .0 T	0.600 0.600 <u>able</u> Foul (1/s) 0.0 0.0	0 0 Add (1,	225 225 225 Flow /s)	Pipe// Pipe// Pipe// Vel (m/s) 2.98 2.89	Conduit Conduit Conduit Conduit Cap (1/s)	Flow (1/s) 37.4 37.4
S6.001 S6.002 PN S4.00 S4.00 S4.00 S4.00 S4.00	17.52 24.23 R (mm 02 6 03 6 04 6 05 6	6 0.3 8 0.2 ain 1/hr) 5.67 5.48 3.64 3.64	800 531 242 T. (mi 5 5 6 6	35.0 33.0 100.0 C. .ns) 5.71 1 5.76 5.20 5.30	0 0.083 0 0.054 0 0.013 <u>Ne</u> US/IL Σ (m) 01.300 99.668 99.426 98.680	5.00 0.00 0.00 twork 1.Area (ha) 0.175 0.175 0.278 0.308	0 0 Results Σ Base Flow (1,	.0 .0 T (s)).0).0).0).0	0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0	0 0 Add (1,	225 225 225 Flow /s) 6.2 6.2 9.6 10.5	Pipe// Pipe// Pipe// Vel (m/s) 2.98 2.89 1.91 1.76	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4	Flow (1/s) 37.4 37.4 57.6 63.2
\$6.001 \$6.002 PN \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00	17.52 24.23 R (mm 02 6 03 6 04 6 05 6 06 6	6 0.9 8 0.2 ain (/hr) 5.67 5.48 3.64 3.22 2.04	800 531 242 T. (mi 5 5 6 6 6 6 6	35.0 33.0 100.0 C. ns) 5.71 1 5.76 5.20 5.30 5.60	0 0.083 0 0.054 0 0.013 <u>Ne</u> US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544	5.00 0.00 0.00 twork : I.Area (ha) 0.175 0.175 0.278 0.308 0.370	0 0	.0 .0 T. (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)	0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0	0 0 Add (1	225 225 225 Flow /s) 6.2 6.2 9.6 10.5 12.4	Pipe// Pipe// Pipe// Vel (m/s) 2.98 2.89 1.91 1.76 1.76	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 124.4	Flow (1/s) 37.4 37.4 57.6 63.2 74.6
\$6.001 \$6.002 PN \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00	17.52 24.23 R (mm 02 6 03 6 04 6 05 6 06 6 07 6	6 0.9 8 0.2 ain b/hr) 5.67 5.48 3.64 3.22 2.04 60.97	800 531 242 T. (mi 5 5 6 6 6 6 6 6	35.0 33.0 100.0 C. ns) 5.71 1 5.76 5.20 5.30 5.60 5.89	0 0.083 0 0.054 0 0.013 <u>Ne</u> US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144	5.00 0.00 0.00 twork : I.Area (ha) 0.175 0.175 0.278 0.308 0.370 0.437	0 0 Σ Base Flow (1,	.0 .0 .0 T . (s) 0.0 0.0 0.0 0.0 0.0	0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0	0 0 Add (1,	225 225 225 Flow /s) 6.2 6.2 9.6 10.5 12.4 14.4	Pipe// Pipe// Pipe// Vel (m/s) 2.98 2.89 1.91 1.76 1.76 1.68	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 124.4 118.9	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7
S6.001 S6.002 PN S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00	17.52 24.23 R (mm 02 6 03 6 04 6 05 6 06 6 007 6 008 6	6 0.9 8 0.2 ain b/hr) 5.67 5.48 3.64 3.22 2.04 60.97 60.75	800 531 242 T. (mi 5 5 6 6 6 6 6 6 6 6 6	35.0 33.0 100.0 C. ns) 5.71 1 5.76 5.20 5.30 5.60 5.89 5.95	0 0.083 0 0.054 0 0.013 <u>Ne</u> US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144 97.810	5.00 0.00 0.00 twork : I.Area (ha) 0.175 0.175 0.278 0.308 0.370 0.437 0.441	0 0 Σ Base Flow (1,	.0 .0 .0 /s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 Add (1	225 225 225 Flow /s) 6.2 6.2 9.6 10.5 12.4 14.4 14.5	Pipe// Pipe// Pipe// Vel (m/s) 2.98 2.89 1.91 1.76 1.68 1.88	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 124.4 118.9 133.0	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7 87.0
\$6.001 \$6.002 PN \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00	17.52 24.23 R (mm 02 6 03 6 04 6 05 6 00 6 00 6 00 6 00 6	6 0.9 8 0.2 ain (/hr) 5.67 5.48 3.64 3.22 2.04 60.97 60.75 60.39	800 531 242 (mi 5 5 6 6 6 6 6 6 7	35.0 33.0 100.0 C. ns) 5.71 1 5.76 5.20 5.30 5.60 5.89	0 0.083 0 0.054 0 0.013 <u>Ne</u> US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144	5.00 0.00 0.00 twork : I.Area (ha) 0.175 0.175 0.278 0.308 0.370 0.437 0.441 0.446	0 0 Σ Base Flow (1,	.0 .0 .0 T, (s) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 Add (1	225 225 225 Flow /s) 6.2 6.2 9.6 10.5 12.4 14.4 14.5 14.6	Pipe// Pipe// Pipe// Vel (m/s) 2.98 2.89 1.91 1.76 1.76 1.68 1.88 1.76	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 124.4 118.9	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7 87.0 87.0 87.6
\$6.001 \$6.002 PN \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00	17.52 24.23 R (mm 02 6 03 6 04 6 05 6 00 6 00 6 00 6 00 6 00 6 00 6 00	6 0.9 8 0.2 ain b/hr) 5.67 5.48 3.64 3.22 2.04 60.97 60.75	800 531 242 (mi 5 5 6 6 6 6 6 6 6 7 7 7	35.0 33.0 100.0 C. ns) 5.71 1 5.76 5.20 5.30 5.60 5.89 5.95 5.05	0 0.083 0 0.054 0 0.013 <u>Ne</u> US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144 97.810 97.713	5.00 0.00 0.00 twork : I.Area (ha) 0.175 0.175 0.278 0.308 0.370 0.437 0.441	0 0 Σ Base Flow (1,	.0 .0 .0 /s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0 Add (1	225 225 225 Flow /s) 6.2 6.2 9.6 10.5 12.4 14.4 14.5	Pipe// Pipe// Pipe// Vel (m/s) 2.98 2.89 1.91 1.76 1.68 1.88 1.76 2.99	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 124.4 118.9 133.0 124.4	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7 87.0 87.6 110.1
S6.001 S6.002 PN S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00	17.52 24.23 24.23 R (mm 02 6 03 6 04 6 05 6 00 6 00 6 00 6 00 6 00 6 00 6 01 5 11 5 12 5	6 0.9 8 0.2 8 0.2 9 0.2 6 0.2 7 0.2 9 0.4 9 0.2 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.2 9 0.2	800 531 242 (mi 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7	35.0 33.0 100.0 (100.0)	0 0.083 0 0.054 0 0.013 <u>Ne</u> US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144 97.810 97.713 96.775 92.720 90.670	5.00 0.00 0.00 twork 1.Area (ha) 0.175 0.175 0.278 0.308 0.370 0.437 0.441 0.446 0.571 0.602 0.602	0 0 EBase Flow (1,	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0 Add (1	225 225 225 Flow /s) 6.2 9.6 10.5 12.4 14.5 14.6 18.4 19.3 19.3	<pre>Pipe// Pipe// Pipe// Pipe// Vel (m/s) 2.98 2.89 1.91 1.76 1.76 1.68 1.88 1.76 2.99 2.99 2.99</pre>	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 118.9 133.0 124.4 211.6 211.6	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7 87.0 87.6 110.1 115.9 115.9
S6.001 S6.002 PN S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00	17.52 24.23 24.23 R (mm 02 6 03 6 04 6 00 6 00 6 00 6 00 6 00 6 00 6 00	6 0.9 8 0.2 8 0.2 9 0.2 6 0.9 7 0.75 6 0.39 9 0.34 9 0.20 9 0.10 8 0.8	800 531 242 T. (mi 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7	35.0 33.0 100.0 (100.0)	0 0.083 0 0.054 0 0.013 Ne US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144 97.810 97.713 96.775 92.720 90.670 89.110	5.00 0.00 0.00 twork 1.Area (ha) 0.175 0.175 0.175 0.278 0.308 0.370 0.437 0.441 0.446 0.571 0.602 0.602 0.602	0 0 EBase Flow (1,	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0 Add (1	225 225 225 Flow /s) 6.2 9.6 10.5 12.4 14.5 14.6 18.4 19.3 19.3 19.3	<pre>Pipe// Pipe</pre>	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 124.4 118.9 133.0 124.4 211.6 211.6 211.6	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7 87.0 87.6 110.1 115.9 115.9 115.9
S6.001 S6.002 PN S4.00 S	17.52 24.23 24.23 R (mm 02 6 03 6 04 6 05 6 004 6 005 6 004 6 005 6 005 6 005 6 005 6 005 6 010 5 11 5 12 5 13 5 14 5	6 0.9 8 0.2 8 0.2 9 0.2 6 0.2 7 0.2 9 0.4 9 0.2 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.2 9 0.2	800 531 242 T. (mi 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7	35.0 33.0 100.0 (100.0)	0 0.083 0 0.054 0 0.013 Ne US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144 97.713 96.775 92.720 90.670 89.110 88.000	5.00 0.00 0.00 twork 1.Area (ha) 0.175 0.175 0.278 0.308 0.370 0.441 0.446 0.571 0.602 0.602 0.602 0.602	0 0 EBase Flow (1,	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0 Add (1	225 225 225 Flow /s) 6.2 9.6 10.5 12.4 14.5 14.6 18.4 19.3 19.3 19.3 19.7	<pre>Pipe// Pipe</pre>	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 118.9 133.0 124.4 211.6 211.6 211.6 211.6 211.6	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7 87.0 87.6 110.1 115.9 115.9 115.9 115.9 118.2
S6.001 S6.002 PN S4.00	17.52 24.23 24.23 R (mm 02 6 03 6 00 6 00 6 00 6 00 6 00 6 00 6 00	6 0.9 8 0.2 8 0.2 9 0.2 6 0.9 7 0.75 6 0.39 9 0.34 9 0.20 9 0.34 9 0.20 9 0.34 9 0.20 9 0.34 9 0.20 9 0.34 9 0.20 9 0.34 9 0.20 9 0.35 9 0.20 9 0.35 9 0.20 9 0.20	800 531 242 T. (mi 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7	35.0 33.0 100.0 (100.0)	0 0.083 0 0.054 0 0.013 Ne US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144 97.713 96.775 92.720 90.670 89.110 88.000 87.377	5.00 0.00 0.00 twork 1.Area (ha) 0.175 0.175 0.278 0.308 0.370 0.437 0.441 0.446 0.571 0.602 0.602 0.602 0.602 0.620 0.651	0 0 EBase Flow (1,	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.600 0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0 Add (1	225 225 225 Flow /s) 6.2 9.6 10.5 12.4 14.5 14.6 18.4 19.3 19.3 19.3 19.7 20.4	<pre>Pipe// Pipe</pre>	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 118.9 133.0 124.4 211.6 211.6 211.6 211.6 211.6 211.6 211.6	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7 87.0 87.6 110.1 115.9 115.9 115.9 115.9 115.9 115.2 122.3
S6.001 S6.002 PN S4.00	17.52 24.23 R (mm 02 6 03 6 04 6 00 6 00 6 00 6 00 6 00 6 00 6 00	6 0.9 8 0.2 8 0.2 9 0.2 6 0.9 7 0.75 6 0.39 9 0.34 9 0.20 9 0.35 9 0.20 9 0.20	800 531 242 (mi 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7	35.0 33.0 100.0 100.0 C. ns) 5.71 1 5.76 5.20 5.30 5.60 5.95 5.36 5.40 5.36 5.40 5.43 5.46 5.56 5.83 5.68	0 0.083 0 0.054 0 0.013 Ne US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144 97.713 96.775 92.720 90.670 89.110 88.000 87.377 86.358	5.00 0.00 0.00 twork 1.Area (ha) 0.175 0.175 0.278 0.308 0.370 0.437 0.441 0.446 0.571 0.602 0.602 0.602 0.602 0.620 0.621 0.798	0 0 EBase Flow (1,	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0 Add (1	225 225 225 Flow /s) 6.2 9.6 10.5 12.4 14.5 14.6 18.4 19.3 19.3 19.3 19.7 20.4 23.9	Pipe// Pipe// Pipe// Pipe// 2.98 2.89 1.91 1.76 1.68 1.88 1.76 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.9	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 124.4 118.9 133.0 124.4 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 212.1 21.0 21.0 21.0 21.0 21.0 21.0 21.	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7 87.0 87.6 110.1 115.9 115.9 115.9 115.9 115.9 115.9 115.9 115.9 115.9 115.9
S6.001 S6.002 PN S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00 S4.00	17.52 24.23 R (mm 02 6 03 6 04 6 00 6 00 6 00 6 00 6 00 6 00 6 00	6 0.9 8 0.2 8 0.2 9 0.2 6 0.9 7 0.75 6 0.39 9 0.34 9 0.20 9 0.34 9 0.20 9 0.34 9 0.20 9 0.34 9 0.20 9 0.34 9 0.20 9 0.34 9 0.20 9 0.35 9 0.20 9 0.35 9 0.20 9 0.20	800 531 242 (mi 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7	35.0 33.0 100.0 100.0 C. ns) 5.71 1 5.76 5.20 5.30 5.60 5.95 5.36 5.40 5.36 5.40 5.43 5.46 5.56 5.83 5.68	0 0.083 0 0.054 0 0.013 Ne US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144 97.713 96.775 92.720 90.670 89.110 88.000 87.377	5.00 0.00 0.00 twork 1.Area (ha) 0.175 0.175 0.175 0.278 0.308 0.370 0.437 0.441 0.446 0.571 0.602 0.602 0.602 0.602 0.602 0.620 0.621 0.798 1.546	0 0 EBase Flow (1,	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.600 0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0 Add (1	225 225 225 Flow /s) 6.2 9.6 10.5 12.4 14.5 14.6 18.4 19.3 19.3 19.3 19.7 20.4	<pre>Pipe// Pipe// Pipe// Pipe// 2.98 2.89 1.91 1.76 1.68 1.88 1.76 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.9</pre>	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 124.4 118.9 133.0 124.4 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 342.1	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7 87.0 87.6 110.1 115.9 115.9 115.9 115.9 115.9 115.9 115.9 115.2 2273.9
S6.001 S6.002 PN S4.00 S	17.52 24.23 R (mm 02 6 03 6 00 6 00 6 00 6 00 6 10 5 11 5 12 5 11 5 11 5 10 5 11 5 10 5	6 0.9 8 0.2 8 0.2 6 0.2 7 0.2 7 0.7 7 0.7 7 0.7 7 0.7 7 0.7 7 0.7 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.3 9 0.2 9 0.3 9 0.2 9 0.2	800 531 242 (mi 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7	35.0 33.0 100.0 100.0 C. ns) .71 1 .76 .20 .30 .60 .89 .95 .36 .40 .43 .46 .56 .83 .68 .94	0 0.083 0 0.054 0 0.013 Ne US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144 97.713 96.775 92.720 90.670 89.110 88.000 87.377 86.358 85.955 90.850	5.00 0.00 0.00 twork 1.Area (ha) 0.175 0.175 0.278 0.308 0.370 0.437 0.441 0.446 0.571 0.602 0.602 0.602 0.602 0.602 0.620 0.621 0.798 1.546 0.083	0 0 EBase Flow (1,	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.600 0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0 Add (1,	225 225 225 225 Flow /s) 6.2 9.6 10.5 12.4 14.5 14.6 18.4 19.3 19.3 19.3 19.3 19.7 20.4 23.9 45.7 3.0	<pre>Pipe// Pipe// Pipe// Pipe// 2.98 2.89 1.91 1.76 1.76 1.68 1.88 1.76 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.9</pre>	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 124.4 118.9 133.0 124.4 211.6 212.6 21.6 21	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7 87.0 87.6 110.1 115.9
\$6.001 \$6.002 PN \$4.00\$\$\$5\$\$5\$\$5\$\$5\$\$\$5\$\$\$5\$\$\$5\$\$\$5\$\$\$\$\$\$\$\$	17.52 24.23 R (mm 02 6 03 6 00 6 00 6 00 6 00 6 10 5 11 5 12 5 13 5 14 5 11 5 11 5 10 5 11 5 10 6 11 5 10 6 11 5 10 6 11 5 10 6 11 5 11 5 10 6 11 5 11 5 10 6 10 6 10 6 10 6 10 5 11 5 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10 6	6 0.9 8 0.2 8 0.2 5.67 5.48 3.64 5.22 6.364 5.22 6.39 9.34 9.20 9.34 9.34 9.35 9.35 9.34 9.35 9.35 9.35 9.35 9.35 9.35 9.35 9.35	800 531 242 T. (mi 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7	35.0 33.0 100.0 100.0 C. ns) .71 1 .76 .20 .30 .60 .89 .95 .36 .40 .43 .46 .56 .83 .68 .94 .47 .60	0 0.083 0 0.054 0 0.013 Ne US/IL Σ (m) 01.300 99.668 99.426 98.680 98.544 98.144 97.713 96.775 92.720 90.670 89.110 88.000 87.377 86.358 85.955 90.850	5.00 0.00 0.00 twork 1.Area (ha) 0.175 0.175 0.175 0.278 0.308 0.370 0.437 0.441 0.446 0.571 0.602 0.602 0.602 0.602 0.602 0.620 0.621 0.798 1.546	0 0 EBase Flow (1,	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.600 0.600 0.600 able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0 Add (1,	225 225 225 225 Flow /s) 6.2 9.6 10.5 12.4 14.5 14.6 18.4 19.3 19.3 19.3 19.7 20.4 23.9 45.7	<pre>Pipe// Pipe// Pipe// Pipe// Pipe// 2.98 2.89 1.91 1.76 1.76 1.68 1.88 1.76 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.9</pre>	Conduit Conduit Conduit Conduit 210.8 204.0 135.3 124.4 124.4 118.9 133.0 124.4 211.6 212.9 342.1	Flow (1/s) 37.4 37.4 57.6 63.2 74.6 86.7 87.0 87.6 110.1 115.9 115.9 115.9 115.9 115.9 115.9 115.9 115.2 2273.9 18.0 29.5

										Pac	ge 3
idpoint	;				Glo	ounthaune				_	
lencon	Link				Co	. Cork				1	
asingst	oke.	RG21	7pp		Pro	oposed Dra	ainag	e			
ate 10/			,			signed by		~			icro
ile GLC										Dr	ainag
			JPDAI	5D		ecked by 2					
nnovyze	9				Net	twork 202	0.1				
				Networ	Desi	gn Table	for S	torm			
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	HYD DIA SECT (mm)		on Type	Auto Design
S1.012	20.739	0.104	199.4	0.000	0.00	0.0	0.600	o 525	Pipe/	'Conduit	.
S1.013					0.00	0.0	0.600		-	'Conduit	_
S7.000	48.697	0.243	200.0	0.098	5.00	0.0	0.600		-	'Conduit	Ŭ
S1.014					0.00		0.600		-	Conduit	
S1.015					0.00		0.600		-	Conduit	
S1.016 S1.017					0.00		0.600			'Conduit 'Conduit	
S1.017 S1.018					0.00		0.600		-	'Conduit	
S1.010					0.00		0.600		-	Conduit Conduit	
S8.000	38.260	0.478	80.0	0.086	5.00	0.0	0.600		-	'Conduit	
S8.001					0.00		0.600		-	'Conduit	
S8.002	18.523	0.412	45.0	0.016	0.00	0.0	0.600			'Conduit	
S8.003	9.580	0.274	35.0	0.006	0.00	0.0	0.600			'Conduit	
S8.004	36.029	1.441	25.0	0.041	0.00	0.0	0.600			'Conduit	6
S8.005					0.00		0.600			'Conduit	
S8.006					0.00		0.600			Conduit	
S8.007	4.016	0.122	33.0	0.000	0.00	0.0	0.600	o 300	Pipe/	Conduit	ď
S1.020	28.647	0.143	200.3	0.066	0.00	0.0	0.600	o 450	Pipe/	'Conduit	ď
				Ne	twork	<u>Results 1</u>	<u>able</u>				
PN	Ra: (mm/			US/IL Σ (m)		Σ Base Flow (l/s)				Cap (1/s)	Flow (l/s)
S1.01	12 53	.94	9.15	85.834	1.695	0.0	0.0			342.6	
	13 68	.19	5.16	85.730	0.000	31.8	0.0	5.3	0.92	36.8	31.8
S1.01									0 00	26 6	20.7
	00 64	.94	5.88	86.700	0.098	0.0	0.0	3.5	0.92	30.0	
s7.00											
s7.00 s1.01	14 63	.60	6.20	86.700 85.250 84.750		31.8	0.0	10.3	1.11	78.5	61.5
S7.00 S1.01 S1.01	14 63 15 62	8.60 2.35	6.20 6.52	85.250	0.113	31.8 31.8	0.0	10.3 11.9	1.11 1.76	78.5	61.5 71.2
\$7.00 \$1.01 \$1.01 \$1.01 \$1.01	14 63 15 62 16 61 17 60	8.60 2.35 44 0.16	6.20 6.52 6.76 7.12	85.250 84.750 84.331 83.935	0.113 0.163 0.186 0.246	31.8 31.8 31.8 31.8	0.0 0.0 0.0 0.0	10.3 11.9 12.6 14.4	1.11 1.76 1.76 1.35	78.5 124.4 124.3 148.8	61.5 71.2 75.3 86.3
\$7.00 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01	14 63 15 62 16 61 17 60 18 59	8.60 2.35 44 0.16 0.15	6.20 6.52 6.76 7.12 7.41	85.250 84.750 84.331 83.935 83.776	0.113 0.163 0.186 0.246 0.360	31.8 31.8 31.8 31.8 31.8	0.0 0.0 0.0 0.0 0.0	10.3 11.9 12.6 14.4 17.9	1.11 1.76 1.76 1.35 1.28	78.5 124.4 124.3 148.8 141.3	61.5 71.2 75.3 86.3 107.4
\$7.00 \$1.01 \$1.01 \$1.01 \$1.01	14 63 15 62 16 61 17 60 18 59	8.60 2.35 .44 0.16 9.15	6.20 6.52 6.76 7.12 7.41	85.250 84.750 84.331 83.935	0.113 0.163 0.186 0.246	31.8 31.8 31.8 31.8 31.8 31.8	0.0 0.0 0.0 0.0 0.0	10.3 11.9 12.6 14.4 17.9	1.11 1.76 1.76 1.35 1.28	78.5 124.4 124.3 148.8	61.5 71.2 75.3 86.3 107.4
\$7.00 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01	14 63 15 62 16 61 17 60 18 59 19 58	8.60 2.35 .44 9.16 9.15 8.59	6.20 6.52 6.76 7.12 7.41 7.58 5.44	85.250 84.750 84.331 83.935 83.776 83.663 91.295	0.113 0.163 0.186 0.246 0.360 0.376 0.086	31.8 31.8 31.8 31.8 31.8 31.8 31.8 0.0	0.0 0.0 0.0 0.0 0.0 0.0	10.3 11.9 12.6 14.4 17.9 18.3 3.1	1.11 1.76 1.76 1.35 1.28 1.28 1.46	78.5 124.4 124.3 148.8 141.3 141.3 58.2	61.5 71.2 75.3 86.3 107.4 109.8 18.7
\$7.00 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$8.00 \$8.00	14 63 15 62 16 61 17 60 18 59 19 58 00 66 01 65	8.60 2.35 44 9.16 9.15 8.59 6.91 5.96	6.20 6.52 6.76 7.12 7.41 7.58 5.44 5.65	85.250 84.750 84.331 83.935 83.776 83.663 91.295 90.817	0.113 0.163 0.186 0.246 0.360 0.376 0.086 0.147	31.8 31.8 31.8 31.8 31.8 31.8 31.8 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 11.9 12.6 14.4 17.9 18.3 3.1 5.3	1.11 1.76 1.76 1.35 1.28 1.28 1.46 1.46	78.5 124.4 124.3 148.8 141.3 141.3 58.2 58.2	61.5 71.2 75.3 86.3 107.4 109.8 18.7 31.5
\$7.00 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$8.00 \$8.00 \$8.00	14 63 15 62 16 61 17 60 18 59 19 58 00 66 01 65 02 65	6.60 	6.20 6.52 6.76 7.12 7.41 7.58 5.44 5.65 5.81	85.250 84.750 84.331 83.935 83.776 83.663 91.295 90.817 90.000	0.113 0.163 0.186 0.246 0.360 0.376 0.086 0.147 0.163	31.8 31.8 31.8 31.8 31.8 31.8 31.8 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 11.9 12.6 14.4 17.9 18.3 3.1 5.3 5.8	1.11 1.76 1.35 1.28 1.28 1.46 1.46 1.96	78.5 124.4 124.3 148.8 141.3 141.3 58.2 58.2 58.2 77.7	61.5 71.2 75.3 86.3 107.4 109.8 18.7 31.5 34.6
\$7.00 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00	14 63 15 62 16 61 17 60 18 59 19 58 00 66 01 65 02 65 03 64	8.60 2.35 44 9.16 9.15 8.59 5.91 5.99 5.27 4.96	6.20 6.52 6.76 7.12 7.41 7.58 5.44 5.65 5.81 5.88	85.250 84.750 84.331 83.935 83.776 83.663 91.295 90.817 90.000 89.000	0.113 0.163 0.246 0.360 0.376 0.086 0.147 0.163 0.169	31.8 31.8 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 11.9 12.6 14.4 17.9 18.3 3.1 5.3 5.8 5.9	1.11 1.76 1.35 1.28 1.28 1.46 1.46 1.96 2.22	78.5 124.4 124.3 148.8 141.3 58.2 58.2 58.2 77.7 88.2	61.5 71.2 75.3 86.3 107.4 109.8 18.7 31.5 34.6 35.7
\$7.00 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00	14 63 15 62 16 61 17 60 18 59 19 58 00 66 01 65 02 65 03 64 04 64	8.60 2.35 44 9.16 9.15 8.59 5.91 5.96 5.27 2.96 4.00	6.20 6.52 6.76 7.12 7.41 5.44 5.65 5.81 5.88 6.11	85.250 84.750 84.331 83.935 83.776 83.663 91.295 90.817 90.000 89.000 88.000	0.113 0.163 0.246 0.360 0.376 0.086 0.147 0.163 0.169 0.210	31.8 31.8 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 11.9 12.6 14.4 17.9 18.3 3.1 5.3 5.8 5.9 7.3 8.3	1.11 1.76 1.35 1.28 1.28 1.46 1.46 1.96 2.22 2.63	78.5 124.4 124.3 148.8 141.3 58.2 58.2 77.7 88.2 104.5	61.5 71.2 75.3 86.3 107.4 109.8 18.7 31.5 34.6 35.7 43.7
\$7.00 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00	14 63 15 62 16 61 17 60 18 59 19 58 00 66 01 655 02 65 03 64 04 64 05 62	8.60 2.35 44 9.16 9.15 8.59 5.91 5.96 5.27 96 5.00 2.05	6.20 6.52 6.76 7.12 7.41 5.44 5.65 5.81 5.88 6.11 6.60	85.250 84.750 84.331 83.935 83.776 83.663 91.295 90.817 90.000 89.000 88.000 86.484	0.113 0.163 0.246 0.360 0.376 0.086 0.147 0.163 0.169 0.210 0.248	31.8 31.8 31.8 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 11.9 12.6 14.4 17.9 18.3 3.1 5.3 5.8 5.9 7.3 8.3	1.11 1.76 1.76 1.35 1.28 1.28 1.46 1.46 1.96 2.22 2.63 1.76	78.5 124.4 124.3 148.8 141.3 58.2 58.2 77.7 88.2 104.5 124.4	61.5 71.2 75.3 86.3 107.4 109.8 18.7 31.5 34.6 35.7 43.7 50.0
\$7.00 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00	14 63 15 62 16 61 17 60 18 59 19 58 00 66 01 65 02 65 03 64 04 64 05 62 06 60	8.60 2.35 44 9.16 9.15 8.59 5.91 5.96 5.27 1.96 5.00 2.05 9.82	6.20 6.52 6.76 7.12 7.41 5.44 5.65 5.81 5.88 6.11 6.60 6.93	85.250 84.750 84.331 83.935 83.776 83.663 91.295 90.817 90.000 89.000 88.000 86.484	0.113 0.163 0.246 0.360 0.376 0.086 0.147 0.163 0.169 0.210 0.248 0.340	31.8 31.8 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 11.9 12.6 14.4 17.9 18.3 3.1 5.3 5.8 5.9 7.3 8.3 11.2	1.11 1.76 1.76 1.35 1.28 1.28 1.46 1.46 1.96 2.22 2.63 1.76 1.43	78.5 124.4 124.3 148.8 141.3 58.2 58.2 77.7 88.2 104.5	61.5 71.2 75.3 86.3 107.4 109.8 18.7 31.5 34.6 35.7 43.7 50.0 67.2
\$7.00 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$1.01 \$8.00	14 63 15 62 16 61 17 60 18 59 19 58 00 66 01 65 02 65 03 64 04 64 05 62 06 60 07 60	8.60 2.35 44 9.16 9.15 8.59 6.91 5.96 5.27 8.96 1.00 2.05 9.82 9.73	6.20 6.52 6.76 7.12 7.41 5.44 5.65 5.81 6.11 6.60 6.93 6.96	85.250 84.750 84.331 83.935 83.776 83.663 91.295 90.817 90.000 89.000 88.000 88.000 86.484 85.831	0.113 0.163 0.246 0.360 0.376 0.086 0.147 0.163 0.169 0.210 0.248 0.340	31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 11.9 12.6 14.4 17.9 18.3 3.1 5.3 5.8 5.9 7.3 8.3 11.2 11.2	1.11 1.76 1.35 1.28 1.28 1.46 1.46 1.96 2.22 2.63 1.76 1.43 2.75	78.5 124.4 124.3 148.8 141.3 141.3 58.2 58.2 77.7 88.2 104.5 124.4 101.4	61.5 71.2 75.3 86.3 107.4 109.8 18.7 31.5 34.6 35.7 43.7 50.0 67.2 67.2

AECOM										Pag	ge 4
lidpoint						ounthaune					
Alencon	Link				Co.	Cork				1	~
Basingst	coke,	RG21	7PP		Pro	posed Dra	inage	e		M	icro
Date 10,	/08/20	21			Des	signed by	JC				
File GLO	DUNTHA	UNE U	JPDAT	ED	Che	ecked by A	AP			U	ainac
Innovyze	2					work 2020					
				Network		qn Table f		lorm			
PN	Length	Fall		e I.Area		Base	k		Secti	lon Type	e Auto
	(m)	(m)	(1:X) (ha)	(mins)	Flow (l/s)	(mm)	SECT (mm)			Desig
S1.021	5.980	0.030	199.	3 0.000	0.00	0.0	0.600	o 525	Pipe/	'Conduit	t 🔐
S1.022					0.00	0.0	0.600			'Conduit	t 🥳
S1.023					0.00		0.600			'Conduit	t 💣
S1.024	22.570	0.376	60.	0.000	0.00	0.0	0.600	o 525	b Pipe/	'Conduit	t 💣
S9.000	35.012	0.175	200.	0 0.098	5.00	0.0	0.600	o 300	Pipe/	'Conduit	t 👌
S10.000	35.450	0.443	80.	0 0.078	5.00	0.0	0.600	o 225	Pipe/	'Conduit	t 🔒
S10.001	21.177	0.265	80.	0 0.070	0.00	0.0	0.600	o 225	i Pipe/	'Conduit	t 💣
S9.001					0.00		0.600		-	'Conduit	
S9.002					0.00		0.600		-	Conduit	
S9.003					0.00		0.600			Conduit	
S9.004					0.00		0.600			Condui1	-
S1.025					0.00		0.600		-	Conduit	
S1.026					0.00		0.600			Conduit	
S1.027 S1.028					0.00		0.600			Conduit	
S1.028 S1.029					0.00		0.600			'Condui† 'Condui†	
S1.029					0.00		0.600			Conduit	
				8 0.000	0.00		0.600			Conduit	
				Net	work	Results T	<u>able</u>				
PN			I.C.	US/IL Σ	I.Area			Add Flow		Cap	Flow
PN				•	I.Area	Σ Base Flow (l/s)				-	
S1.0	(mm 21 5	/hr) (1 7.32	mins) 7.98	(m) 83.305	I.Area (ha) 0.782	Flow (1/s) 31.8	(1/s) 0.0	(1/s) 30.7	(m/s) 1.58	(1/s) 342.7	(1/s) 184.3
S1.0 S1.0	(mm 21 5 22 5	/hr) (1 7.32 7.04	mins) 7.98 8.07	(m) 83.305 83.275	I.Area (ha) 0.782 0.804	Flow (1/s) 31.8 31.8	(l/s) 0.0 0.0	(1/s) 30.7 31.2	(m/s) 1.58 2.90	(1/s) 342.7 626.8	(1/s) 184.3 187.1
S1.0 S1.0 S1.0	(mm) 21 5 22 5 23 5	/hr) (1 7.32 7.04 6.67	mins) 7.98 8.07 8.19	(m) 83.305 83.275 81.835	I.Area (ha) 0.782 0.804 0.838	Flow (1/s) 31.8 31.8 31.8	(1/s) 0.0 0.0 0.0	(1/s) 30.7 31.2 32.1	(m/s) 1.58 2.90 2.90	(1/s) 342.7 626.8 626.8	(1/s) 184.3 187.1 192.4
S1.0 S1.0 S1.0 S1.0	(mm) 21 5 22 5 23 5 24 5	/hr) (1 7.32 7.04 6.67 6.29	mins) 7.98 8.07 8.19 8.32	(m) 83.305 83.275 81.835 80.390	I.Area (ha) 0.782 0.804 0.838 0.838	Flow (1/s) 31.8 31.8 31.8 31.8	(1/s) 0.0 0.0 0.0 0.0	(1/s) 30.7 31.2 32.1 32.1	(m/s) 1.58 2.90 2.90 2.89	(1/s) 342.7 626.8 626.8 626.7	(1/s) 184.3 187.1 192.4 192.4
S1.0 S1.0 S1.0	(mm) 21 5 22 5 23 5 24 5	/hr) (1 7.32 7.04 6.67 6.29	mins) 7.98 8.07 8.19 8.32	(m) 83.305 83.275 81.835 80.390	I.Area (ha) 0.782 0.804 0.838	Flow (1/s) 31.8 31.8 31.8 31.8	(1/s) 0.0 0.0 0.0 0.0	(1/s) 30.7 31.2 32.1 32.1	(m/s) 1.58 2.90 2.90 2.89	(1/s) 342.7 626.8 626.8	(1/s) 184.3 187.1 192.4 192.4
S1.0 S1.0 S1.0 S1.0	(mm) 21 5 22 5 23 5 24 5 00 6	/hr) (1 7.32 7.04 6.67 6.29 6.50	mins) 7.98 8.07 8.19 8.32 5.53	(m) 83.305 83.275 81.835 80.390	I.Area (ha) 0.782 0.804 0.838 0.838 0.098	Flow (1/s) 31.8 31.8 31.8 31.8 31.8 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0	(1/s) 30.7 31.2 32.1 32.1 3.5	(m/s) 1.58 2.90 2.90 2.89 1.11	(1/s) 342.7 626.8 626.8 626.7	(1/s) 184.3 187.1 192.4 192.4 21.2
\$1.0 \$1.0 \$1.0 \$1.0 \$1.0	(mm) 21 5 22 5 23 5 24 5 00 6 00 6	/hr) (1 7.32 7.04 6.67 6.29 6.50	mins) 7.98 8.07 8.19 8.32 5.53 5.40	(m) 83.305 83.275 81.835 80.390 78.265	I.Area (ha) 0.782 0.804 0.838 0.838 0.098	Flow (1/s) 31.8 31.8 31.8 31.8 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0	<pre>(1/s)</pre>	(m/s) 1.58 2.90 2.90 2.89 1.11 1.46	(1/s) 342.7 626.8 626.8 626.7 78.3 58.2	(1/s) 184.3 187.1 192.4 192.4 21.2 17.0
\$1.0 \$1.0 \$1.0 \$1.0 \$9.0 \$9.0	(mm 21 5 22 5 23 5 24 5 00 6 00 6 01 6	/hr) (1 7.32 7.04 6.67 6.29 6.50 7.06 5.97	mins) 7.98 8.07 8.19 8.32 5.53 5.40 5.65	(m) 83.305 83.275 81.835 80.390 78.265 80.600 80.157 78.090	I.Area (ha) 0.782 0.804 0.838 0.838 0.098 0.098 0.078 0.148 0.312	Flow (1/s) 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>(1/s)</pre>	(m/s) 1.58 2.90 2.89 1.11 1.46 1.46 1.11	<pre>(1/s) 342.7 626.8 626.8 626.7 78.3 58.2 58.2 78.3</pre>	(1/s) 184.3 187.1 192.4 192.4 21.2 17.0 31.7 65.1
\$1.0 \$1.0 \$1.0 \$9.0 \$10.0 \$10.0 \$10.0 \$9.0 \$9.0	(mm 21 5 22 5 23 5 24 5 00 6 00 6 01 6 01 6 01 6 02 6	/hr) (1 7.32 7.04 6.67 6.29 6.50 7.06 5.97 4.16 1.71	mins) 7.98 8.07 8.19 8.32 5.53 5.40 5.65 6.07 6.69	(m) 83.305 83.275 81.835 80.390 78.265 80.600 80.157 78.090 77.874	I.Area (ha) 0.782 0.804 0.838 0.838 0.098 0.098 0.078 0.148 0.312 0.407	Flow (1/s) 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>(1/s)</pre>	(m/s) 1.58 2.90 2.89 1.11 1.46 1.46 1.11 1.28	(1/s) 342.7 626.8 626.8 626.7 78.3 58.2 58.2 78.3 141.1	(1/s) 184.3 187.1 192.4 192.4 21.2 17.0 31.7 65.1 81.6
\$1.0 \$1.0 \$1.0 \$9.0 \$10.0 \$10.0 \$10.0 \$9.0 \$9.0 \$9.0	(mm. 21 5 22 5 23 5 24 5 00 6 01 6 01 6 01 6 02 6 03 6	<pre>/hr) (1 7.32 7.04 6.67 6.29 6.50 7.06 5.97 4.16 1.71 1.13</pre>	mins) 7.98 8.07 8.19 8.32 5.53 5.40 5.65 6.07 6.69 6.85	(m) 83.305 83.275 81.835 80.390 78.265 80.600 80.157 78.090 77.874 77.636	I.Area (ha) 0.782 0.804 0.838 0.838 0.098 0.098 0.078 0.148 0.312 0.407 0.476	Flow (1/s) 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>(1/s)</pre>	<pre>(m/s) 1.58 2.90 2.90 2.89 1.11 1.46 1.46 1.11 1.28 1.28</pre>	<pre>(1/s) 342.7 626.8 626.8 626.7 78.3 58.2 58.2 78.3 141.1 141.1</pre>	<pre>(1/s) 184.3 187.1 192.4 192.4 21.2 17.0 31.7 65.1 81.6 94.6</pre>
\$1.0 \$1.0 \$1.0 \$9.0 \$10.0 \$10.0 \$10.0 \$9.0 \$9.0	(mm. 21 5 22 5 23 5 24 5 00 6 01 6 01 6 01 6 02 6 03 6	<pre>/hr) (1 7.32 7.04 6.67 6.29 6.50 7.06 5.97 4.16 1.71 1.13</pre>	mins) 7.98 8.07 8.19 8.32 5.53 5.40 5.65 6.07 6.69 6.85	(m) 83.305 83.275 81.835 80.390 78.265 80.600 80.157 78.090 77.874 77.636	I.Area (ha) 0.782 0.804 0.838 0.838 0.098 0.098 0.078 0.148 0.312 0.407	Flow (1/s) 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>(1/s)</pre>	<pre>(m/s) 1.58 2.90 2.90 2.89 1.11 1.46 1.46 1.11 1.28 1.28</pre>	(1/s) 342.7 626.8 626.8 626.7 78.3 58.2 58.2 78.3 141.1	<pre>(1/s) 184.3 187.1 192.4 192.4 21.2 17.0 31.7 65.1 81.6 94.6</pre>
\$1.0 \$1.0 \$1.0 \$9.0 \$10.0 \$10.0 \$10.0 \$9.0 \$9.0 \$9.0	(mm. 21 5 22 5 23 5 24 5 00 6 01 6 01 6 01 6 02 6 03 6 04 6	<pre>/hr) (1 7.32 7.04 6.67 6.29 6.50 7.06 5.97 4.16 1.71 1.13 0.75</pre>	mins) 7.98 8.07 8.19 8.32 5.53 5.40 5.65 6.07 6.69 6.85 6.95	(m) 83.305 83.275 81.835 80.390 78.265 80.600 80.157 78.090 77.874 77.636	I.Area (ha) 0.782 0.804 0.838 0.838 0.098 0.098 0.078 0.148 0.312 0.407 0.476 0.507 1.358	Flow (1/s) 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>(1/s)</pre>	<pre>(m/s) 1.58 2.90 2.90 2.89 1.11 1.46 1.46 1.11 1.28 1.28 1.28 1.58</pre>	<pre>(1/s) 342.7 626.8 626.8 626.7 78.3 58.2 58.2 78.3 141.1 141.1</pre>	<pre>(1/s) 184.3 187.1 192.4 192.4 21.2 17.0 31.7 65.1 81.6 94.6 100.1</pre>
\$1.0 \$1.0 \$1.0 \$9.0 \$10.0 \$10.0 \$10.0 \$9.0 \$9.0 \$9.0 \$9.0 \$9.0 \$1.0 \$1.0	(mm. 21 5 22 5 23 5 24 5 00 6 01 6 01 6 01 6 02 6 03 6 04 6 25 5 26 5	<pre>/hr) (1 7.32 7.04 6.67 6.29 6.50 7.06 5.97 4.16 1.71 1.13 0.75 5.67 4.78</pre>	mins) 7.98 8.07 8.19 8.32 5.53 5.40 5.65 6.07 6.69 6.85 6.95 8.53 8.84	(m) 83.305 83.275 81.835 80.390 78.265 80.600 80.157 78.090 77.874 77.636 77.385 77.285	I.Area (ha) 0.782 0.804 0.838 0.838 0.098 0.098 0.078 0.148 0.312 0.407 0.476 0.507 1.358 1.410	Flow (1/s) 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>(1/s)</pre>	<pre>(m/s) 1.58 2.90 2.90 2.89 1.11 1.46 1.46 1.41 1.28 1.28 1.28 1.28 1.58 2.73</pre>	<pre>(1/s) 342.7 626.8 626.8 626.7 78.3 58.2 58.2 78.3 141.1 141.1 141.1 342.6 591.0</pre>	<pre>(1/s) 184.3 187.1 192.4 192.4 21.2 17.0 31.7 65.1 81.6 94.6 100.1 283.8 289.1</pre>
\$1.0 \$1.0 \$1.0 \$9.0 \$10.0 \$10.0 \$10.0 \$9.0 \$9.0 \$9.0 \$9.0 \$9.0 \$1.0 \$1.0 \$1.0	(mm. 21 5 22 5 23 5 24 5 00 6 01 6 01 6 01 6 02 6 03 6 04 6 25 5 26 5 27 5	<pre>/hr) (i 7.32 7.04 6.67 6.29 6.50 7.06 5.97 4.16 1.71 1.13 0.75 5.67 4.78 4.42</pre>	mins) 7.98 8.07 8.19 8.32 5.53 5.40 5.65 6.07 6.69 6.85 6.95 8.53 8.84 8.98	(m) 83.305 83.275 81.835 80.390 78.265 80.600 80.157 78.090 77.874 77.636 77.576 77.385 77.285 75.700	I.Area (ha) 0.782 0.804 0.838 0.838 0.098 0.098 0.078 0.148 0.312 0.407 0.476 0.507 1.358 1.410 1.505	Flow (1/s) 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>(1/s)</pre>	<pre>(m/s) 1.58 2.90 2.90 2.89 1.11 1.46 1.46 1.41 1.28 1.28 1.28 1.28 1.58 2.73 2.73</pre>	<pre>(1/s) 342.7 626.8 626.8 626.7 78.3 58.2 58.2 78.3 141.1 141.1 141.1 342.6 591.0 590.6</pre>	<pre>(1/s) 184.3 187.1 192.4 192.4 21.2 17.0 31.7 65.1 81.6 94.6 100.1 283.8 289.1 304.3</pre>
\$1.0 \$1.0 \$1.0 \$9.0 \$10.0 \$10.0 \$10.0 \$9.0 \$9.0 \$9.0 \$9.0 \$9.0 \$1.0 \$1.0 \$1.0 \$1.0	(mm. 21 5 22 5 23 5 24 5 00 6 01 6 01 6 01 6 02 6 03 6 04 6 25 5 26 5 27 5 28 5	<pre>/hr) (1 7.32 7.04 6.67 6.29 6.50 7.06 5.97 4.16 1.71 1.13 0.75 5.67 4.78 4.42 4.11</pre>	mins) 7.98 8.07 8.19 8.32 5.53 5.40 5.65 6.07 6.69 6.85 6.95 8.53 8.84 8.98 9.09	(m) 83.305 83.275 81.835 80.390 78.265 80.600 80.157 78.090 77.874 77.636 77.385 77.285 75.700 75.307	I.Area (ha) 0.782 0.804 0.838 0.838 0.098 0.098 0.078 0.148 0.312 0.407 0.476 0.507 1.358 1.410 1.505 1.507	Flow (1/s) 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>(1/s)</pre>	<pre>(m/s) 1.58 2.90 2.90 2.89 1.11 1.46 1.46 1.46 1.11 1.28 1.28 1.28 1.28 1.58 2.73 2.73 2.97</pre>	<pre>(1/s) 342.7 626.8 626.8 626.7 78.3 58.2 58.2 78.3 141.1 141.1 141.1 342.6 591.0 590.6 838.9</pre>	<pre>(1/s) 184.3 187.1 192.4 192.4 21.2 17.0 31.7 65.1 81.6 94.6 100.1 283.8 289.1 304.3 304.3</pre>
\$1.0 \$1.0 \$1.0 \$9.0 \$10.0 \$10.0 \$10.0 \$9.0 \$9.0 \$9.0 \$9.0 \$9.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1	(mm. 21 5 22 5 23 5 24 5 00 6 01 6 01 6 01 6 02 6 03 6 04 6 25 5 26 5 27 5 28 5 29 5	<pre>/hr) (1 7.32 7.04 6.67 6.29 6.50 7.06 5.97 4.16 1.71 1.13 0.75 5.67 4.78 4.42 4.11 3.74</pre>	mins) 7.98 8.07 8.19 8.32 5.53 5.40 5.65 6.07 6.69 6.85 6.95 8.53 8.84 8.98 9.09 9.23	(m) 83.305 83.275 81.835 80.390 78.265 80.600 80.157 78.090 77.874 77.636 77.385 77.285 75.700 75.307 74.180	I.Area (ha) 0.782 0.804 0.838 0.838 0.098 0.098 0.078 0.148 0.312 0.407 0.476 0.507 1.358 1.410 1.505 1.507	Flow (1/s) 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>(1/s)</pre>	<pre>(m/s) 1.58 2.90 2.90 2.89 1.11 1.46 1.46 1.46 1.11 1.28 1.28 1.28 1.28 1.58 2.73 2.97 2.97</pre>	<pre>(1/s) 342.7 626.8 626.8 626.7 78.3 58.2 58.2 78.3 141.1 141.1 141.1 342.6 591.0 590.6 838.9 838.4</pre>	<pre>(1/s) 184.3 187.1 192.4 192.4 21.2 17.0 31.7 65.1 81.6 94.6 100.1 283.8 289.1 304.3 304.3 304.3</pre>
\$1.0 \$1.0 \$1.0 \$9.0 \$10.0 \$10.0 \$10.0 \$9.0 \$9.0 \$9.0 \$9.0 \$9.0 \$1.0 \$1.0 \$1.0 \$1.0	(mm. 21 5 22 5 23 5 24 5 00 6 01 6 01 6 01 6 01 6 02 6 03 6 04 6 25 5 26 5 27 5 28 5 29 5 30 5	<pre>/hr) (1 7.32 7.04 6.67 6.29 6.50 7.06 5.97 4.16 1.71 1.13 0.75 5.67 4.78 4.42 4.11 3.74</pre>	mins) 7.98 8.07 8.19 8.32 5.53 5.40 5.65 6.07 6.69 6.85 6.95 8.53 8.84 8.98 9.09 9.23 9.72	(m) 83.305 83.275 81.835 80.390 78.265 80.600 80.157 78.090 77.874 77.636 77.385 77.285 75.700 75.307 74.180 73.737	I.Area (ha) 0.782 0.804 0.838 0.838 0.098 0.098 0.078 0.148 0.312 0.407 0.476 0.507 1.358 1.410 1.505 1.507	Flow (1/s) 31.8 31.8 31.8 31.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>(1/s)</pre>	<pre>(m/s) 1.58 2.90 2.90 2.89 1.11 1.46 1.46 1.46 1.11 1.28 1.28 1.28 1.28 1.58 2.73 2.97 2.97 1.85</pre>	<pre>(1/s) 342.7 626.8 626.8 626.7 78.3 58.2 58.2 78.3 141.1 141.1 141.1 342.6 591.0 590.6 838.9</pre>	<pre>(1/s) 184.3 187.1 192.4 192.4 21.2 17.0 31.7 65.1 81.6 94.6 100.1 283.8 289.1 304.3 304.3 304.3 304.3</pre>

AECOM										Page	e 5
Aidpoint					Glo	unthaune					
lencon	Link				Co.	Cork				4	
Basingst	oke,	RG21	7pp		Pro	posed Dra	ainage	2		M	
Date 10/						signed by		-		Mi	
File GLO			יייגרסוז	ΓD		ecked by A				Dra	inaq
		UNE	OI DAI.	<u>U</u>		work 2020					-
Innovyze					Net	WORK ZUZU	.1				
				Network	Desig	gn Table :	for St	torm			
PN	Length (m)	Fall (m)	Slope	e I.Area (ha)		Base Flow (l/s)	k (mm)	HYD DI SECT (m	A Section m)	Туре	Auto Design
S1.032	37.487	0.18	7 200.	0.125	0.00	0.0	0.600	o 3	75 Pipe/Co	nduit	ď
S1.033	37.487	0.75	0 50.0	0.024	0.00	0.0	0.600		75 Pipe/Co		ĕ
S1.034	12.395	0.15	5 80.	0.185	0.00	0.0	0.600	o 3	75 Pipe/Co	nduit	ď
S11.000	34.492	1.72	5 20.0	0.036	5.00	0.0	0.600	o 2	25 Pipe/Co	nduit	ð
01 025	16 000	0 11	0 27		0 00	0.0	0 600		75 Dime/Ca		•
S1.035 S1.036					0.00		0.600		75 Pipe/Co 75 Pipe/Co		ď
S1.038 S1.037					0.00		0.600		75 Pipe/CC 75 Pipe/Cc		ter de la constante de la cons
									1 - , • •		•
S12.000					5.00		0.600		25 Pipe/Co		0
S12.001					0.00		0.600		25 Pipe/Co		6
S12.002					0.00		0.600		25 Pipe/Co		ď
S12.003 S12.004					0.00		0.600		25 Pipe/Co		ď
S12.004 S12.005					0.00		0.600		25 Pipe/Co 00 Pipe/Co		ď
S12.005					0.00		0.600		75 Pipe/Co		ъ Г
S1.038	31.274	0.62	5 50.0	0.019	0.00	0.0	0.600	o 3	75 Pipe/Co	nduit	ď
S1.039					0.00		0.600		75 Pipe/Co		ீ
S1.040 S1.041					0.00		0.600		75 Pipe/Co		ď
51.041	33.090	0.00.	2 37.		0.00		0.600	o 3'	75 Pipe/Co	maurc	ď
				<u>Ne</u>	twork	<u>Results T</u>					
PN	Ra: (mm/		T.C. (mins)	US/IL Σ (m)		Σ Base Flow (l/s)		Add Flo (1/s)		-	Flow [1/s)
S1.03	32 65	.84	5.67	72.863	0.125	55.2	0.0	15.	5 1.28 1	41.1	93.0
				72.676			0.0		3 2.57 2		
S1.03	34 64	.36	6.02	71.250	0.334	55.2	0.0		7 2.03 23		
S11.00			5.20	74.475	0.036				3 2.94 1		
S1.03				71.095					7 2.97 32		
	36 63				0.424				7 2.97 3		
S1.03				69.246	0.459				8 2.97 32		
S12.00				73.450 72.750					2 2.08 8 7 2.94 11		
Q10 00					0.075				1 1.77 ²		
S12.00				70.547	0.115				8 2.63 10		
S12.00 S12.00 S12.00		• Z I			0.259				0 2.94 1		
S12.00 S12.00			6.14	00.930					9 1.11 [.]		
\$12.00 \$12.00 \$12.00	03 64 04 63	.88		68.938 68.146	0.293	0.0	0.0				
\$12.00 \$12.00 \$12.00	03 64 04 63 05 62	.88	6.47		0.293 0.297				0 1.28 1		
\$12.00 \$12.00 \$12.00 \$12.00 \$12.00 \$12.00	03 64 04 63 05 62 06 62 38 61	.88 .55 .20	6.47 6.56 6.77	68.146 67.960 67.925	0.297	0.0	0.0	10. 36.	0 1.28 1 9 2.57 2	41.2 83.5 2	60.1 21.1
\$12.00 \$12.00 \$12.00 \$12.00 \$12.00 \$12.00 \$1.03 \$1.03	03 64 04 63 05 62 06 62 38 61 39 60	.88 .55 .20 .43 .72	6.47 6.56 6.77 6.96	68.146 67.960 67.925 67.300	0.297 0.776 0.900	0.0 55.2 55.2	0.0	10. 36. 40.	0 1.28 1 9 2.57 28 6 2.87 3	41.2 83.5 2 17.3 2	60.1 21.1 43.8
\$12.00 \$12.00 \$12.00 \$12.00 \$12.00 \$12.00 \$1.03 \$1.03	03 64 04 63 05 62 06 62 38 61 39 60 40 60	.88 .55 .20 .43 .72	6.47 6.56 6.77 6.96 7.13	68.146 67.960 67.925 67.300 66.453	0.297	0.0 55.2 55.2 55.2	0.0 0.0 0.0 0.0	10. 36. 40. 40.	0 1.28 1 9 2.57 2	41.2 33.5 2 17.3 2 27.6 2	60.1 21.1 43.8 45.2

AECOM										Pag	ge 6
Midpoint						ounthaune					
Alencon						Cork					-
Basingst			7PP			posed Dra	-	2		M	icro
Date 10,	/08/20	21			Des	signed by	JC				aina
File GLO	OUNTHA	UNE U	PDATI	ED	Che	ecked by A	P			וט	
Innovyze	e				Net	work 2020	.1				
			<u>1</u>	Network	Desig	gn Table f	for St	lorm			
PN	Length (m)	Fall (m)	Slope (1:X)	e I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD DIA SECT (mm)	Secti	lon Typ	e Auto Desig
S1.042	10.698	0.285	37.5	0.008	0.00	0.0	0.600	o 375	Pipe/	'Condui	t 💣
s13.000	57.517	0.765	75.2	2 0.139	5.00	0.0	0.600	o 225	Pipe/	'Condui	t 💣
S13.001	43.659	0.218	200.0	0.100	0.00		0.600	o 300	Pipe/	'Condui	t 🥳
S13.002					0.00		0.600		-	Condui	t 💣
S13.003					0.00		0.600		-	Condui	
S13.004	23.772	0.119	200.0	0.062	0.00	0.0	0.600	o 300	Pipe/	'Condui	t 💣
S1.043	5.101	0.085	60.0	0.000	0.00	0.0	0.600			'Condui	
	3.750				0.00	0.0	0.600			'Condui	t 💣
	10.149				0.00		0.600			'Condui	t 💣
	5.835				0.00		0.600			Condui	t 🔒
	10.127				0.00		0.600			Condui	t 🔒
	10.126				0.00		0.600			Condui	t 👸
	7.863 9.381				0.00		0.600			'Condui 'Condui	
	6.042				0.00		0.600		-	'Condui	
	6.042				0.00		0.600			'Condui	
	9.062				0.00		0.600			'Condui	
	17.313				0.00		0.600			'Condui	
S1.055	10.000	0.267	37.5	0.012	0.00	0.0	0.600			'Condui	
S1.056	10.000	0.267	37.5	0.005	0.00	0.0	0.600	o 375	Pipe/	'Condui	t 💣
				Net	twork	<u>Results T</u>	<u>able</u>				
PN			.c.	US/IL Σ				Add Flow		Cap	Flow
	(mm/	'hr) (m	nins)	(m)	(ha)	Flow (l/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.0	942 59	.28	7.37	63.518	0.948	55.2	0.0	41.5	2.97	327.5	248.8
S13.0	000 66	5.02		63.300	0.139	0.0	0.0	5.0	1.51		29.8
									1 1 1	78.3	49.0
S13.0			6.29		0.238			8.2			
S13.0	02 62	2.51	6.48	62.242	0.238	0.0	0.0	8.2	1.11	78.3	49.0
S13.0 S13.0	002 62 003 60	2.51	6.48 6.95	62.242 62.178	0.238 0.325	0.0	0.0	8.2 10.7	1.11 1.11	78.3 78.3	64.2
S13.0	002 62 003 60	2.51	6.48 6.95	62.242	0.238	0.0	0.0	8.2	1.11	78.3	
\$13.0 \$13.0 \$13.0 \$13.0	002 62 003 60 004 59 043 59	2.51 0.77 0.51 0.18	6.48 6.95 7.30 7.40	62.242 62.178 62.024 61.680	0.238 0.325 0.387 1.335	0.0 0.0 0.0 55.2	0.0 0.0 0.0	8.2 10.7 12.5 53.8	1.11 1.11 1.11 2.90	78.3 78.3 78.3 626.8	64.2 74.9 323.0
\$13.0 \$13.0 \$13.0 \$13.0 \$1.0 \$1.0	002 62 003 60 004 59 043 59	2.51 0.77 0.51 0.18 0.11	6.48 6.95 7.30 7.40 7.42	62.242 62.178 62.024 61.680 59.850	0.238 0.325 0.387 1.335 1.335	0.0 0.0 55.2 55.2	0.0 0.0 0.0 0.0	8.2 10.7 12.5 53.8 53.8	1.11 1.11 1.11 2.90 2.91	78.3 78.3 78.3 626.8 629.3	64.2 74.9 323.0 323.0
\$13.0 \$13.0 \$13.0 \$1.0 \$1.0 \$1.0 \$1.0	002 62 003 60 004 59 043 59 044 59	2.51).77).51).18).11 3.91	6.48 6.95 7.30 7.40 7.42 7.48	62.242 62.178 62.024 61.680 59.850 57.985	0.238 0.325 0.387 1.335 1.335 1.335	0.0 0.0 55.2 55.2 55.2	0.0 0.0 0.0 0.0 0.0 0.0	8.2 10.7 12.5 53.8 53.8 53.8	1.11 1.11 1.11 2.90 2.91 2.89	78.3 78.3 78.3 626.8 629.3 626.5	64.2 74.9 323.0 323.0 323.0
\$13.0 \$13.0 \$13.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0	002 62 003 60 004 59 043 59 044 59 045 58 046 68	2.51 0.77 0.51 0.18 0.11 0.91 0.84	6.48 6.95 7.30 7.40 7.42 7.48 5.03	62.242 62.178 62.024 61.680 59.850 57.985 56.500	0.238 0.325 0.387 1.335 1.335 1.335 0.000	0.0 0.0 55.2 55.2 55.2 75.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.2 10.7 12.5 53.8 53.8 53.8 12.6	1.11 1.11 1.11 2.90 2.91 2.89 2.97	78.3 78.3 78.3 626.8 629.3 626.5 328.1	64.2 74.9 323.0 323.0 323.0 75.3
\$13.0 \$13.0 \$13.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0	002 62 003 60 004 59 043 59 044 59 045 58 046 68 047 68	2.51 0.77 0.51 0.18 0.11 0.11 0.91 0.84 0.56	6.48 6.95 7.30 7.40 7.42 7.48 5.03 5.09	62.242 62.178 62.024 61.680 59.850 57.985 56.500 54.644	0.238 0.325 0.387 1.335 1.335 1.335 0.000 0.000	0.0 0.0 55.2 55.2 55.2 75.3 75.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.2 10.7 12.5 53.8 53.8 53.8 12.6 15.1	1.11 1.11 1.11 2.90 2.91 2.89 2.97 2.97	78.3 78.3 78.3 626.8 629.3 626.5 328.1 327.7	64.2 74.9 323.0 323.0 323.0 75.3 90.4
\$13.0 \$13.0 \$13.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1	002 62 003 60 004 59 043 59 044 59 045 58 046 68 047 68 048 68	2.51 0.77 0.51 0.18 0.11 0.91 0.84 0.56 0.28	6.48 6.95 7.30 7.40 7.42 7.48 5.03 5.09 5.15	62.242 62.178 62.024 61.680 59.850 57.985 56.500 54.644 52.400	0.238 0.325 0.387 1.335 1.335 1.335 0.000 0.000 0.000	0.0 0.0 55.2 55.2 55.2 75.3 75.3 75.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.2 10.7 12.5 53.8 53.8 53.8 12.6 15.1 15.1	1.11 1.11 1.11 2.90 2.91 2.89 2.97 2.97 2.97	78.3 78.3 78.3 626.8 629.3 626.5 328.1 327.7 327.7	64.2 74.9 323.0 323.0 323.0 75.3 90.4 90.4
\$13.0 \$13.0 \$13.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1	002 62 003 60 004 59 043 59 044 59 045 58 046 68 046 68 047 68 048 68	2.51).77).51).18).11 3.91 3.84 3.56 3.28 3.07	6.48 6.95 7.30 7.40 7.42 7.48 5.03 5.09 5.15 5.19	62.242 62.178 62.024 61.680 59.850 57.985 56.500 54.644 52.400 50.430	0.238 0.325 0.387 1.335 1.335 1.335 0.000 0.000 0.000 0.000	0.0 0.0 55.2 55.2 75.3 75.3 75.3 75.3 75.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.2 10.7 12.5 53.8 53.8 53.8 12.6 15.1 15.1 15.1	1.11 1.11 1.11 2.90 2.91 2.89 2.97 2.97 2.97 2.97	78.3 78.3 78.3 626.8 629.3 626.5 328.1 327.7 327.7 327.9	64.2 74.9 323.0 323.0 323.0 75.3 90.4 90.4 90.4
\$13.0 \$13.0 \$13.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1	002 62 003 60 004 59 043 59 044 59 045 58 046 68 047 68 048 68 049 68 049 68	2.51 0.77 0.51 0.18 0.11 3.91 3.84 3.56 3.28 3.07 7.82	6.48 6.95 7.30 7.40 7.42 7.48 5.03 5.09 5.15 5.19 5.24	62.242 62.178 62.024 61.680 59.850 57.985 56.500 54.644 52.400	0.238 0.325 0.387 1.335 1.335 1.335 0.000 0.000 0.000	0.0 0.0 55.2 55.2 75.3 75.3 75.3 75.3 75.3 75.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.2 10.7 12.5 53.8 53.8 53.8 12.6 15.1 15.1	1.11 1.11 1.11 2.90 2.91 2.89 2.97 2.97 2.97 2.97 2.97	78.3 78.3 78.3 626.8 629.3 626.5 328.1 327.7 327.7	64.2 74.9 323.0 323.0 323.0 75.3 90.4 90.4
\$13.0 \$13.0 \$13.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1	002 62 003 60 004 59 043 59 044 59 045 58 046 68 047 68 048 68 049 68 050 67 051 67	2.51 0.77 0.51 0.18 0.11 0.18 0.11 0.91 0.84 0.56 0.28 0.07 0.82 0.65	6.48 6.95 7.30 7.40 7.42 7.48 5.03 5.09 5.15 5.19 5.24 5.28	62.242 62.178 62.024 61.680 59.850 57.985 56.500 54.644 52.400 50.430 49.220	0.238 0.325 0.387 1.335 1.335 1.335 0.000 0.000 0.000 0.000 0.000	0.0 0.0 55.2 55.2 55.2 75.3 75.3 75.3 75.3 75.3 75.3 75.3 75.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.2 10.7 12.5 53.8 53.8 53.8 12.6 15.1 15.1 15.1 15.1	1.11 1.11 1.11 2.90 2.91 2.89 2.97 2.97 2.97 2.97 2.97 2.97	78.3 78.3 78.3 626.8 629.3 626.5 328.1 327.7 327.7 327.7 327.9 327.6	64.2 74.9 323.0 323.0 323.0 75.3 90.4 90.4 90.4 90.4
\$13.0 \$13.0 \$13.0 \$1.0	002 62 003 60 004 59 043 59 044 59 045 58 046 68 047 68 048 68 049 68 050 67 051 67 052 67	2.51 0.77 0.51 0.18 0.11 0.18 0.11 0.91 0.84 0.56 0.28 0.07 0.82 0.65 0.49	6.48 6.95 7.30 7.40 7.42 7.48 5.03 5.09 5.15 5.19 5.24 5.28 5.31	62.242 62.178 62.024 61.680 59.850 57.985 56.500 54.644 52.400 50.430 49.220 47.470	0.238 0.325 0.387 1.335 1.335 0.000 0.000 0.000 0.000 0.000 0.000 0.019	0.0 0.0 55.2 55.2 55.2 75.3 75.3 75.3 75.3 75.3 75.3 75.3 75.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.2 10.7 12.5 53.8 53.8 53.8 12.6 15.1 15.1 15.1 15.1 15.1 15.8	1.11 1.11 1.11 2.90 2.91 2.89 2.97 2.97 2.97 2.97 2.97 2.97 2.97	78.3 78.3 78.3 626.8 629.3 626.5 328.1 327.7 327.7 327.7 327.6 327.6	64.2 74.9 323.0 323.0 75.3 90.4 90.4 90.4 90.4 90.4 94.5 94.5
\$13.0 \$13.0 \$13.0 \$1.0	002 62 003 60 004 59 043 59 044 59 045 58 046 68 047 68 049 68 050 67 051 67 052 67 053 67 054 66	2.51 0.77 0.51 0.18 0.11 0.18 0.11 0.91 0.84 0.56 0.28 0.07 0.82 0.65 0.49 0.26 0.49 0.26 0.81	6.48 6.95 7.30 7.40 7.42 7.48 5.03 5.09 5.15 5.19 5.24 5.28 5.31 5.36 5.46	62.242 62.178 62.024 61.680 59.850 57.985 56.500 54.644 52.400 50.430 49.220 47.470 45.700 44.540 43.795	0.238 0.325 0.387 1.335 1.335 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.019 0.019 0.058	0.0 0.0 55.2 55.2 75.3 75.3 75.3 75.3 75.3 75.3 75.3 75.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.2 10.7 12.5 53.8 53.8 53.8 12.6 15.1 15.1 15.1 15.1 15.1 15.8 15.8 15.8	1.11 1.11 1.11 2.90 2.91 2.89 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.9	78.3 78.3 78.3 626.8 629.3 626.5 328.1 327.7 327.7 327.7 327.6 327.6 327.6 327.6 327.6 327.8	64.2 74.9 323.0 323.0 75.3 90.4 90.4 90.4 90.4 90.4 90.4 94.5 94.5 94.5 103.0
\$13.0 \$13.0 \$13.0 \$1.0	002 62 003 60 004 59 043 59 044 59 045 58 046 68 047 68 049 68 050 67 051 67 052 67 053 67 055 66	2.51 0.77 0.51 0.18 0.11 0.18 0.11 0.91 0.884 0.55 0.28 0.07 0.82 0.65 0.49 0.26 0.49 0.26 0.81 0.55	6.48 6.95 7.30 7.40 7.42 7.48 5.03 5.09 5.15 5.19 5.24 5.28 5.31 5.36 5.46 5.52	62.242 62.178 62.024 61.680 59.850 57.985 56.500 54.644 52.400 50.430 49.220 47.470 45.700 44.540	0.238 0.325 0.387 1.335 1.335 1.335 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.019	0.0 0.0 55.2 55.2 75.3 75.3 75.3 75.3 75.3 75.3 75.3 75.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.2 10.7 12.5 53.8 53.8 53.8 12.6 15.1 15.1 15.1 15.1 15.1 15.8 15.8 15.8	1.11 1.11 1.11 2.90 2.91 2.89 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.9	78.3 78.3 78.3 626.8 629.3 626.5 328.1 327.7 327.7 327.9 327.6 327.6 327.6 327.6 327.9	64.2 74.9 323.0 323.0 75.3 90.4 90.4 90.4 90.4 90.4 94.5 94.5 94.5 103.0 105.5

AECOM											Pag	ge 7
Midpoint					Glo	ounthaune						
Alencon I	Link				Co.	Cork					100	
Basingsto	oke, 1	RG21	7pp		Pro	posed Dra	inage	9			14	
Date 10/0	-					igned by		-				cro
											Dr	ainage
File GLOU	JN.I.HA	JNE U	PDATE	úD		ecked by A						
Innovyze					Net	work 2020	0.1					
			<u>1</u>	Network	Desid	n Table f	for St	<u>torm</u>				
PN L	ength (m)		-	I.Area	T.E.	Base Flow (l/s)	k (mm)	HYD		Secti	on Type	
	(111)	(m)	(1:X)	(ha)	(11115)	FIOW (1/5)	(mm)	SECT	(mm)			Design
S1.057 1	0.000	0.267	37.5	0.004	0.00	0.0	0.600	0	375	Pipe/	Conduit	: 💣
		0.261			0.00		0.600			-	Conduit	: 💣
S1.059					0.00		0.600			-	Conduit	
S1.060 1					0.00		0.600			-	Conduit	: 💣
S1.061 1					0.00		0.600			-	Conduit	
S1.062 1					0.00		0.600	0			Conduit	
S1.063	4.756	0.024	198.2	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	: (
S14.000 1			80.0		5.00		0.600	0		-	Conduit	
S14.001 1	1.232	0.140	80.0	0.000	0.00	0.0	0.600	0	100	Pipe/	Conduit	
S1.064 2	21.787	0.581	37.5	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	: d
S1.065 8	1.953	2.185	37.5	0.000	0.00	0.0	0.600	0		-	Conduit	
S1.066 4	15.614	1.216	37.5	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	
S1.067 2	.9.502	0.787	37.5	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	
S1.068 2	20.758	0.554	37.5	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	
S1.069 2	20.757	0.554	37.5	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	
S1.070 2	20.758	0.554	37.5	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	
S1.071 2	20.757	0.554	37.5	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	
S1.072 3	86.558	0.975	37.5	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	: 💣
S1.073 2	23.489	0.626	37.5	0.000	0.00	0.0	0.600	0		-	Conduit	: 💣
S1.074 2	25.896	0.691	37.5	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	- d
				Net	twork	<u>Results T</u>	<u>able</u>					
PN	Rai (mm/	in I hr) (n	I.C. nins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)		Add F (1/s			Cap (1/s)	Flow (1/s)
01 05	7 66								7 0	2,97	327 9	107.3
51.05	/ 00	.05	5.63	37.950	0.079	75.3	0.0	1	1.9			
S1.05 S1.05		.05 .80	5.63 5.68	37.950 36.380	0.079 0.083				7.9 8.0		327.6	108.2
	8 65		5.68			75.3	0.0	1		2.97		
S1.058	8 65 9 65	.80	5.68 5.74	36.380	0.083	75.3 75.3	0.0	1 1	8.0	2.97 2.96	327.6	109.0
S1.058 S1.059	8 65 9 65 0 65	.80 .56 .21	5.68 5.74 5.82	36.380 35.250	0.083 0.087	75.3 75.3 75.3	0.0 0.0 0.0	1 1 1	8.0 8.2	2.97 2.96 2.97	327.6 327.4	109.0 109.7
S1.058 S1.059 S1.060	8 65 9 65 0 65 1 64	.80 .56 .21	5.68 5.74 5.82 5.96	36.380 35.250 33.990	0.083 0.087 0.091	75.3 75.3 75.3 75.3 75.3	0.0 0.0 0.0 0.0	1 1 1 1	8.0 8.2 8.3 9.5 9.5	2.97 2.96 2.97 1.68 2.97	327.6 327.4 327.6 185.1 327.5	109.0 109.7 116.9 116.9
S1.058 S1.059 S1.060 S1.060	8 65 9 65 0 65 1 64 2 64	.80 .56 .21 .61	5.68 5.74 5.82 5.96 6.05	36.380 35.250 33.990 33.597	0.083 0.087 0.091 0.126	75.3 75.3 75.3 75.3 75.3	0.0 0.0 0.0 0.0	1 1 1 1	8.0 8.2 8.3 9.5	2.97 2.96 2.97 1.68 2.97	327.6 327.4 327.6 185.1	109.0 109.7 116.9 116.9
S1.058 S1.059 S1.060 S1.060 S1.062	8 65 9 65 0 65 1 64 2 64 3 68	.80 .56 .21 .61 .25 .69	5.68 5.74 5.82 5.96 6.05 5.06	36.380 35.250 33.990 33.597 33.476	0.083 0.087 0.091 0.126 0.126	75.3 75.3 75.3 75.3 75.3 83.2	0.0 0.0 0.0 0.0 0.0	1 1 1 1 1	8.0 8.2 8.3 9.5 9.5	2.97 2.96 2.97 1.68 2.97	327.6 327.4 327.6 185.1 327.5	109.0 109.7 116.9 116.9
\$1.05 \$1.05 \$1.06 \$1.06 \$1.06 \$1.06	8 65 9 65 0 65 1 64 2 64 3 68 0 67	.80 .56 .21 .61 .25 .69	5.68 5.74 5.82 5.96 6.05 5.06	36.380 35.250 33.990 33.597 33.476 31.750	0.083 0.087 0.091 0.126 0.126 0.000	75.3 75.3 75.3 75.3 75.3 83.2 0.0	0.0 0.0 0.0 0.0 0.0 0.0	1 1 1 1 1	8.0 8.2 8.3 9.5 9.5 3.9	2.97 2.96 2.97 1.68 2.97 1.28	327.6 327.4 327.6 185.1 327.5 141.8	109.0 109.7 116.9 116.9 83.2
\$1.050 \$1.060 \$1.060 \$1.063 \$1.063 \$1.063 \$14.000 \$14.000	8 65 9 65 0 65 1 64 2 64 3 68 0 67 1 66 4 65	.80 .56 .21 .61 .25 .69 .37 .37	5.68 5.74 5.82 5.96 6.05 5.06 5.34 5.55 5.68	36.380 35.250 33.990 33.597 33.476 31.750 33.200 32.982 31.726	0.083 0.087 0.091 0.126 0.126 0.000	75.3 75.3 75.3 75.3 83.2 0.0 0.0 83.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 1 1 1 1 1 1	8.0 8.2 8.3 9.5 9.5 3.9	2.97 2.96 2.97 1.68 2.97 1.28 0.86 0.86 2.97	327.6 327.4 327.6 185.1 327.5 141.8 6.8 6.8 327.7	109.0 109.7 116.9 116.9 83.2 0.0
\$1.056 \$1.060 \$1.060 \$1.063 \$1.063 \$1.063 \$14.000 \$14.000 \$1.066 \$1.065	8 65 9 65 0 65 1 64 2 64 3 68 0 67 1 66 4 65 5 63	.80 .56 .21 .61 .25 .69 .37 .37 .83 .87	5.68 5.74 5.82 5.96 6.05 5.06 5.34 5.55 5.68 6.14	36.380 35.250 33.990 33.597 33.476 31.750 33.200 32.982 31.726 31.145	0.083 0.087 0.091 0.126 0.000 0.000 0.000 0.000 0.000	75.3 75.3 75.3 75.3 83.2 0.0 0.0 83.2 83.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 1 1 1 1 1 1 1 1 1	8.0 8.2 8.3 9.5 9.5 3.9 0.0 0.0 6.6 6.6	2.97 2.96 2.97 1.68 2.97 1.28 0.86 0.86 2.97 2.97	327.6 327.4 327.6 185.1 327.5 141.8 6.8 6.8 327.7 327.7	109.0 109.7 116.9 116.9 83.2 0.0 0.0 99.8 99.8
\$1.056 \$1.060 \$1.062 \$1.063 \$1.063 \$14.000 \$14.000 \$14.003 \$1.066 \$1.066 \$1.066	8 65 9 65 0 65 1 64 2 64 3 68 0 67 1 66 4 65 5 63 6 62	.80 .56 .21 .61 .25 .69 .37 .37 .83 .87 .85	5.68 5.74 5.82 5.96 6.05 5.06 5.34 5.55 5.68 6.14 6.39	36.380 35.250 33.990 33.597 33.476 31.750 33.200 32.982 31.726 31.145 28.960	0.083 0.087 0.091 0.126 0.000 0.000 0.000 0.000 0.000 0.000	75.3 75.3 75.3 75.3 83.2 0.0 0.0 83.2 83.2 83.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 1 1 1 1 1 1 1 1 1 1 1	8.0 8.2 8.3 9.5 9.5 3.9 0.0 0.0 6.6 6.6 6.6	2.97 2.96 2.97 1.68 2.97 1.28 0.86 0.86 2.97 2.97 2.97	327.6 327.4 327.6 185.1 327.5 141.8 6.8 6.8 327.7 327.7 327.6	109.0 109.7 116.9 116.9 83.2 0.0 0.0 99.8 99.8 99.8
\$1.056 \$1.060 \$1.062 \$1.063 \$1.063 \$14.000 \$14.003 \$1.066 \$1.066 \$1.066 \$1.066	8 65 9 65 0 65 1 64 2 64 3 68 0 67 1 66 4 65 5 63 6 62 7 62	.80 .56 .21 .61 .25 .69 .37 .37 .83 .87 .85 .21	5.68 5.74 5.96 6.05 5.06 5.34 5.55 5.68 6.14 6.39 6.56	36.380 35.250 33.990 33.597 33.476 31.750 33.200 32.982 31.726 31.145 28.960 27.744	0.083 0.087 0.091 0.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000	75.3 75.3 75.3 75.3 83.2 0.0 0.0 83.2 83.2 83.2 83.2 83.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1	8.0 8.2 8.3 9.5 9.5 3.9 0.0 0.0 6.6 6.6 6.6 6.6	2.97 2.96 2.97 1.68 2.97 1.28 0.86 0.86 2.97 2.97 2.97 2.97	327.6 327.4 327.6 185.1 327.5 141.8 6.8 6.8 327.7 327.7 327.6 327.8	109.0 109.7 116.9 83.2 0.0 0.0 99.8 99.8 99.8 99.8 99.8
\$1.056 \$1.060 \$1.062 \$1.063 \$1.063 \$14.000 \$14.003 \$1.066 \$1.066 \$1.066 \$1.066	8 65 9 65 1 64 2 64 3 68 0 67 1 66 4 65 5 63 6 62 7 62 8 61	.80 .56 .21 .61 .25 .69 .37 .37 .83 .87 .85 .21 .77	5.68 5.74 5.96 6.05 5.06 5.34 5.55 5.68 6.14 6.39 6.56 6.68	36.380 35.250 33.990 33.597 33.476 31.750 33.200 32.982 31.726 31.145 28.960 27.744 26.957	0.083 0.087 0.091 0.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	75.3 75.3 75.3 75.3 83.2 0.0 0.0 83.2 83.2 83.2 83.2 83.2 83.2 83.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.0 8.2 8.3 9.5 9.5 3.9 0.0 0.0 6.6 6.6 6.6 6.6 6.6	2.97 2.96 2.97 1.68 2.97 1.28 0.86 0.86 2.97 2.97 2.97 2.97 2.97	327.6 327.4 327.6 185.1 327.5 141.8 6.8 6.8 327.7 327.7 327.6 327.8 327.8	109.0 109.7 116.9 116.9 83.2 0.0 0.0 99.8 99.8 99.8 99.8 99.8 99.8
\$1.050 \$1.060 \$1.060 \$1.060 \$1.060 \$14.000 \$14.000 \$1.060 \$1.060 \$1.060 \$1.060 \$1.060	8 65 9 65 1 64 2 64 3 68 0 67 1 66 4 65 5 63 6 62 7 62 8 61 9 61	.80 .56 .21 .61 .25 .69 .37 .37 .83 .87 .85 .21 .77 .33	5.68 5.74 5.96 6.05 5.06 5.34 5.55 5.68 6.14 6.39 6.56 6.68 6.79	36.380 35.250 33.990 33.597 33.476 31.750 33.200 32.982 31.726 31.145 28.960 27.744 26.957 26.403	0.083 0.087 0.091 0.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	75.3 75.3 75.3 75.3 75.3 83.2 0.0 0.0 83.2 83.2 83.2 83.2 83.2 83.2 83.2 83.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.0 8.2 8.3 9.5 9.5 3.9 0.0 0.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6	2.97 2.96 2.97 1.68 2.97 1.28 0.86 0.86 0.86 0.86 2.97 2.97 2.97 2.97 2.97	327.6 327.4 327.6 185.1 327.5 141.8 6.8 6.8 327.7 327.7 327.6 327.8 327.8 327.8	109.0 109.7 116.9 116.9 83.2 0.0 0.0 99.8 99.8 99.8 99.8 99.8 99.8 9
\$1.058 \$1.059 \$1.060 \$1.063 \$1.063 \$14.000 \$14.003 \$1.066 \$1.066 \$1.066 \$1.066 \$1.066 \$1.066 \$1.066	8 65 9 65 1 64 2 64 3 68 0 67 1 66 4 65 5 63 6 62 7 62 8 61 9 61 00 60	.80 .56 .21 .61 .25 .69 .37 .37 .83 .87 .85 .21 .77 .33 .91	5.68 5.74 5.96 6.05 5.06 5.34 5.55 5.68 6.14 6.39 6.56 6.68 6.79 6.91	36.380 35.250 33.990 33.597 33.476 31.750 33.200 32.982 31.726 31.145 28.960 27.744 26.957 26.403 25.849	0.083 0.087 0.091 0.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	75.3 75.3 75.3 75.3 75.3 83.2 0.0 0.0 0.0 83.2 83.2 83.2 83.2 83.2 83.2 83.2 83.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.0 8.2 8.3 9.5 9.5 9.5 9.0 0.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	2.97 2.96 2.97 1.68 2.97 1.28 0.86 0.86 0.86 0.86 2.97 2.97 2.97 2.97 2.97 2.97	327.6 327.4 327.6 185.1 327.5 141.8 6.8 6.8 327.7 327.7 327.6 327.8 327.8 327.8 327.8	109.0 109.7 116.9 116.9 83.2 0.0 0.0 99.8 99.8 99.8 99.8 99.8 99.8 9
\$1.058 \$1.059 \$1.060 \$1.063 \$1.063 \$14.000 \$14.003 \$1.066 \$1.066 \$1.066 \$1.066 \$1.066 \$1.066 \$1.066 \$1.066 \$1.067	8 65 9 65 1 64 2 64 3 68 0 67 1 66 4 65 5 63 6 62 7 62 8 61 9 61 0 60 1 60	.80 .56 .21 .61 .25 .69 .37 .37 .83 .87 .85 .21 .77 .33 .91 .49	5.68 5.74 5.82 5.96 6.05 5.06 5.34 5.55 5.68 6.14 6.39 6.56 6.68 6.79 6.91 7.03	36.380 35.250 33.990 33.597 33.476 31.750 32.982 31.726 31.145 28.960 27.744 26.957 26.403 25.849 25.295	0.083 0.087 0.091 0.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	75.3 75.3 75.3 75.3 75.3 83.2 0.0 0.0 0.0 83.2 83.2 83.2 83.2 83.2 83.2 83.2 83.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.0 8.2 9.5 9.5 3.9 0.0 0.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	2.97 2.96 2.97 1.68 2.97 1.28 0.86 0.86 0.86 0.86 2.97 2.97 2.97 2.97 2.97 2.97 2.97	327.6 327.4 327.6 185.1 327.5 141.8 6.8 6.8 327.7 327.7 327.6 327.8 327.8 327.8 327.8 327.8	109.0 109.7 116.9 116.9 83.2 0.0 0.0 99.8 99.8 99.8 99.8 99.8 99.8 9
\$1.058 \$1.059 \$1.060 \$1.063 \$1.063 \$14.000 \$14.003 \$1.066 \$1.066 \$1.066 \$1.066 \$1.066 \$1.066 \$1.066 \$1.067 \$1.077 \$1.077	8 65 9 65 0 65 1 64 2 64 3 68 0 67 1 66 4 655 63 62 7 62 8 61 9 61 0 60 1 60 2 59	.80 .56 .21 .61 .25 .69 .37 .37 .83 .87 .85 .21 .77 .33 .91 .49 .77	5.68 5.74 5.82 5.96 6.05 5.06 5.34 5.55 5.68 6.14 6.39 6.56 6.68 6.79 6.91 7.03 7.23	36.380 35.250 33.990 33.597 33.476 31.750 32.982 31.726 31.145 28.960 27.744 26.957 26.403 25.849 25.295 24.741	0.083 0.087 0.091 0.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	75.3 75.3 75.3 75.3 75.3 83.2 0.0 0.0 83.2 83.2 83.2 83.2 83.2 83.2 83.2 83.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.0 8.2 8.3 9.5 9.5 3.9 0.0 0.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	2.97 2.96 2.97 1.68 2.97 1.28 0.86 0.86 0.86 0.86 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97	327.6 327.4 327.6 185.1 327.5 141.8 6.8 6.8 327.7 327.7 327.6 327.8 327.8 327.8 327.8 327.8 327.8 327.7	109.0 109.7 116.9 116.9 83.2 0.0 0.0 99.8 99.8 99.8 99.8 99.8 99.8 9
\$1.050 \$1.060 \$1.060 \$1.060 \$1.060 \$14.000 \$14.000 \$1.060 \$1.060 \$1.060 \$1.060 \$1.060 \$1.060 \$1.060 \$1.060 \$1.060 \$1.060 \$1.060 \$1.060 \$1.060	8 65 9 65 0 65 1 64 2 64 3 68 0 67 1 66 4 655 63 62 7 62 8 61 9 61 0 60 2 59 3 59	.80 .56 .21 .61 .25 .69 .37 .37 .83 .87 .85 .21 .77 .33 .91 .49 .77	5.68 5.74 5.82 5.96 6.05 5.06 5.34 5.55 5.68 6.14 6.39 6.56 6.68 6.79 6.91 7.03 7.23 7.36	36.380 35.250 33.990 33.597 33.476 31.750 32.982 31.726 31.145 28.960 27.744 26.957 26.403 25.849 25.295	0.083 0.087 0.091 0.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	75.3 75.3 75.3 75.3 75.3 83.2 0.0 0.0 83.2 83.2 83.2 83.2 83.2 83.2 83.2 83.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.0 8.2 9.5 9.5 3.9 0.0 0.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	2.97 2.96 2.97 1.68 2.97 1.28 0.86 0.86 0.86 0.86 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97	327.6 327.4 327.6 185.1 327.5 141.8 6.8 6.8 327.7 327.7 327.6 327.8 327.8 327.8 327.8 327.8	109.0 109.7 116.9 83.2 0.0 0.0 99.8 99.8 99.8 99.8 99.8 99.8 9

Midmodulet											1 4 9	e 8
Midpoint					Glo	ounthaune						
Alencon	Link				Co.	Cork					1	~
Basingst	coke,	RG21	7PP		Pro	posed Dra	inage	9			Mi	CCO.
Date 10/						igned by						cio
File GLO	-		PDATT	ΕD		ecked by A					Ur	ainac
		UND 0										
Innovyze	9				Net	work 2020	• 1					
			1	Network	Desig	<u>n Table f</u>	for St	orm				
PN	Length (m)	Fall (m)	Slope (1:X)	e I.Area) (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)		DIA (mm)	Secti	on Type	Auto Desig
c1 075	86.931	2 210	37.5	5 0.000	0.00	0.0	0.600	0	375	Bing	Conduit	
	69.412				0.00		0.600			-	'Conduit 'Conduit	· · · ·
	45.038				0.00		0.600			-	Conduit Conduit	
	45.038				0.00		0.600			-	'Conduit	
	43.039 51.463				0.00		0.600				'Conduit	
21.075		···/2		5.000	5.00	0.0		0	210	pc/	2011/0410	•
S15.000			40.0		5.00		0.600			-	'Conduit	
S15.001	9.098		25.0		0.00		0.600				Conduit	- 6 °
S15.002	6.980		25.0		0.00		0.600			-	Conduit	
S15.003	8.735		25.0		0.00		0.600			-	Conduit	
	6.537				0.00		0.600			-	'Conduit	
S15.005			20.0		0.00		0.600			-	'Conduit	
S15.006	4.169		10.0		0.00		0.600			-	Conduit	
S15.007			20.0		0.00		0.600			-	Conduit	
S15.008	5.594		20.0		0.00		0.600			-	Conduit	
S15.009			25.2		0.00		0.600			-	Conduit	
S15.010	5.992		22.5		0.00		0.600			-	Conduit	
\$15.011 \$15.012	4.192		40.0 30.0		0.00		0.600			-	'Conduit 'Conduit	
\$15.012 \$15.013					0.00		0.600				'Conduit	
S15.013	7.672		60.0		0.00		0.600			-	Conduit Conduit	
S15.014			12.0		0.00		0.600			-	'Conduit	
							abla					-
				Net	work	Results T	abie					
	_									TT- 7	0	1 1
PN	Ra: (mm/		.C. nins)	US/IL Σ	I.Area		Foul	Add Fl (1/s		Vel (m/s)	Cap (1/s)	Flow (l/s)
PN S1.0	(mm/	'hr) (m	nins) 8.00	US/IL Σ (m) 22.449	I.Area (ha) 0.000	Σ Base Flow (1/s) 83.2	Foul (1/s) 0.0	(1/s		(m/s)	-	
S1.0 S1.0	(mm/ 75 57 76 56	hr) (m .26 .09	nins) 8.00 8.39	US/IL Σ (m) 22.449 20.131	I.Area (ha) 0.000 0.000	Σ Base Flow (1/s) 83.2 83.2	Foul (1/s) 0.0 0.0	(1/s) 16 16) 5.6 5.6	(m/s) 2.97 2.97	(1/s) 327.7 327.7	(l/s) 99.8 99.8
S1.0 S1.0 S1.0	(mm/ 75 57 76 56 77 55	hr) (m .26 .09 .25	nins) 8.00 8.39 8.68	US/IL Σ (m) 22.449 20.131 18.280	I.Area (ha) 0.000 0.000 0.000	Σ Base Flow (1/s) 83.2 83.2 83.2	Foul (1/s) 0.0 0.0 0.0	(1/s 16 16 16) 5.6 5.6 5.6	(m/s) 2.97 2.97 2.57	(1/s) 327.7 327.7 283.6	(1/s) 99.8 99.8 99.8
S1.0 S1.0 S1.0 S1.0	(mm/ 75 57 76 56 77 55 78 54	'hr) (m .26 .09 .25 .36	8.00 8.39 8.68 9.00	US/IL Σ (m) 22.449 20.131 18.280 17.379	I.Area (ha) 0.000 0.000 0.000 0.000	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2	Foul (1/s) 0.0 0.0 0.0 0.0	(1/s 16 16 16 16) 5.6 5.6 5.6 5.6	(m/s) 2.97 2.97 2.57 2.34	(1/s) 327.7 327.7 283.6 258.8	(1/s) 99.8 99.8 99.8 99.8
S1.0 S1.0 S1.0	(mm/ 75 57 76 56 77 55 78 54	hr) (m .26 .09 .25	8.00 8.39 8.68 9.00	US/IL Σ (m) 22.449 20.131 18.280	I.Area (ha) 0.000 0.000 0.000	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2	Foul (1/s) 0.0 0.0 0.0 0.0	(1/s 16 16 16 16) 5.6 5.6 5.6	(m/s) 2.97 2.97 2.57 2.34	(1/s) 327.7 327.7 283.6	(1/s) 99.8 99.8 99.8
S1.0 S1.0 S1.0 S1.0	(mm/ 75 57 76 56 77 55 78 54 79 52	(hr) (n .26 .09 .25 .36 .23	8.00 8.39 8.68 9.00 9.82	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629	I.Area (ha) 0.000 0.000 0.000 0.000 0.000	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 83.2	Foul (1/s) 0.0 0.0 0.0 0.0 0.0	(1/s 16 16 16 16) 5.6 5.6 5.6 5.6	(m/s) 2.97 2.97 2.57 2.34 1.04	(1/s) 327.7 327.7 283.6 258.8 115.0	(1/s) 99.8 99.8 99.8 99.8 99.8
\$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68	(hr) (n .26 .09 .25 .36 .23	<pre>nins) 8.00 8.39 8.68 9.00 9.82 5.15</pre>	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000	I.Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 83.2 0.0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0	(1/s 16 16 16 16) 5.6 5.6 5.6 5.6 5.6	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07	(1/s) 327.7 327.7 283.6 258.8 115.0 82.5	(1/s) 99.8 99.8 99.8 99.8 99.8 8.3
\$1.0 \$1.0 \$1.0 \$1.0 \$1.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67	(hr) (n .26 .09 .25 .36 .23	<pre>************************************</pre>	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629	I.Area (ha) 0.000 0.000 0.000 0.000 0.000	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 83.2 0.0 0.0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0	(1/s 16 16 16 16 16) 5.6 5.6 5.6 5.6	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63	(1/s) 327.7 327.7 283.6 258.8 115.0	(1/s) 99.8 99.8 99.8 99.8 99.8 8.3 8.3
\$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67	(hr) (n 226 09 225 36 223 223 226 298	<pre>hins) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25</pre>	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400	I.Area (ha) 0.000 0.000 0.000 0.000 0.000 0.037 0.037	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0	(1/s 16 16 16 16 16) 5.6 5.6 5.6 5.6 5.6 5.6	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63	(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5	(1/s) 99.8 99.8 99.8 99.8 99.8 8.3
\$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67 03 67	(hr) (n .26 .09 .25 .36 .23 .23 .26 .98 .77	<pre>hins) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25 5.31</pre>	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400 25.700	I.Area (ha) 0.000 0.000 0.000 0.000 0.000 0.037 0.037 0.037	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0 0.0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(1/s) 16 16 16 16 16 16 16 16 16 16) 5.6 5.6 5.6 5.6 5.6 5.6 5.6	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.63	<pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4</pre>	(1/s) 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3
\$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67 03 67 04 67	<pre>hr) (m .26 .09 .25 .36 .23 .26 .98 .77 .51</pre>	ains) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25 5.31 5.35	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400 25.700 25.000	I.Area (ha) 0.000 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.037	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0 0.0 0.0 0.0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(1/s 16 16 16 16 16 16 16 16 16 16) 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.4 .4 .4	(m/s) 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.94	<pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4 104.4</pre>	(1/s) 99.8 99.8 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3
\$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67 03 67 04 67 05 67	<pre>// hr) (n // 226 // 225 // 225 // 223 // 223 // 226 // 28 // 77 // 51 // 33</pre>	<pre>hins) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25 5.31 5.35 5.41</pre>	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400 25.700 25.000 24.600	I.Area (ha) 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.037 0.037	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s 16 16 16 16 16 16 16 16 16 16 16 16 16) 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.94 2.94	<pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4 104.4 116.9</pre>	(1/s) 99.8 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3 8.3 29.7
\$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67 03 67 04 67 05 67 06 66 07 66	<pre>hr) (n</pre>	<pre>hins) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25 5.31 5.35 5.41 5.43 5.43</pre>	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400 25.700 25.000 24.600 24.200 22.200 21.000	I.Area (ha) 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.037 0.037 0.136 0.136	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s 16 16 16 16 16 16 16 16 16 16	5.6 6.7 6.7 6.8 6.8 6.9 6.9 6.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 </td <td>(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.94 2.94 4.16 2.94</td> <td><pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4 104.4 116.9 116.9 165.5 116.9</pre></td> <td><pre>(1/s) 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3 29.7 29.7 29.7 29.7</pre></td>	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.94 2.94 4.16 2.94	<pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4 104.4 116.9 116.9 165.5 116.9</pre>	<pre>(1/s) 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3 29.7 29.7 29.7 29.7</pre>
\$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67 03 67 04 67 05 67 06 66 07 66 08 66	<pre>hr) (n</pre>	<pre>hins) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25 5.31 5.35 5.41 5.43 5.46 5.49</pre>	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400 25.700 25.000 24.600 24.200 22.200 21.000 19.500	I.Area (ha) 0.000 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.037 0.136 0.136 0.136 0.136	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s 16 16 16 16 16 16 16 16 16 16	<pre>) 5.6 5.6 5.6 5.6 5.64444 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9</pre>	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.94 2.94 4.16 2.94 2.94	<pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4 104.4 116.9 116.9 165.5 116.9 116.9</pre>	<pre>(1/s) 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3 29.7 29.7 29.7 29.7 29.7</pre>
\$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67 03 67 04 67 05 67 06 66 07 66 08 66 09 66	<pre>hr) (n</pre>	<pre>hins) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25 5.31 5.35 5.41 5.43 5.46 5.49 5.52</pre>	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400 25.700 25.000 24.600 24.200 22.200 21.000 19.500 18.500	I.Area (ha) 0.000 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.037 0.136 0.136 0.136	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 16 16 16 16 16 16 16 16 16 16	<pre>) 5.6 5.6 5.6 5.64444 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9</pre>	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.94 2.94 4.16 2.94 2.94 2.94 2.62	<pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4 104.4 116.9 116.9 165.5 116.9 116.9 116.9 104.1</pre>	<pre>(1/s) 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3 29.7 29.7 29.7 29.7 29.7 29.7</pre>
\$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67 03 67 04 67 05 67 06 66 07 66 08 66 09 66 10 66	hr) (n .26 .09 .25 .36 .23 .26 .98 .77 .51 .33 .04 .96 .80 .66 .54 .38	<pre>hins) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25 5.31 5.35 5.41 5.43 5.46 5.49 5.52 5.55</pre>	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400 25.700 25.000 24.600 24.200 22.200 21.000 19.500 18.500 17.300	I.Area (ha) 0.000 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.037 0.136 0.136 0.136 0.136 0.136 0.136	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s 16 16 16 16 16 16 16 16 16 16	<pre>) 5.6 5.6 5.6 5.6 5.6444 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9</pre>	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.94 2.94 4.16 2.94 2.94 2.94 2.94 2.62 2.77	<pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4 104.4 116.9 116.9 116.9 116.9 116.9 116.9 104.1 110.1</pre>	<pre>(1/s) 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7</pre>
\$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67 03 67 04 67 05 67 06 66 07 66 08 66 09 66 10 66 11 65	hr) (n .26 .09 .25 .36 .23 .26 .98 .77 .51 .33 .04 .96 .80 .66 .54 .38 .72	ains) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25 5.31 5.35 5.41 5.43 5.46 5.49 5.52 5.70	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400 25.700 25.000 24.600 24.200 22.200 21.000 19.500 18.500 17.300 15.800	I.Area (ha) 0.000 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.037 0.136 0.136 0.136 0.136 0.136 0.136 0.136	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 16 16 16 16 16 16 16 16 16 16	<pre>) 5.6 5.6 5.6 5.6 5.6 5.6 1.4 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9</pre>	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.94 2.94 4.16 2.94 4.16 2.94 2.94 2.94 2.94 2.97 2.03 2.03 2.09 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.03 2.07 2.07 2.03 2.04 2.07	<pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4 104.4 116.9 116.9 116.9 116.9 116.9 116.9 104.1 110.1 82.5</pre>	<pre>(1/s) 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7</pre>
\$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67 03 67 04 67 05 67 06 66 07 66 08 66 09 66 10 66 11 65 12 65	hr) (n .26 .09 .25 .36 .23 .26 .98 .77 .51 .33 .04 .96 .54 .38 .72 .59	<pre>hins) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25 5.31 5.35 5.41 5.43 5.46 5.49 5.52 5.55 5.70 5.70 5.73</pre>	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400 25.700 25.000 24.600 24.200 22.200 21.000 19.500 18.500 17.300 15.800 15.000	I.Area (ha) 0.000 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 16 16 16 16 16 16 16 16 16 16	<pre>) 5.6 5.6 5.6 5.6 5.644 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9</pre>	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.94 2.94 4.16 2.94 2.94 2.94 2.62 2.77 2.07 2.40	<pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4 104.4 116.9 116.9 116.9 116.9 116.9 116.9 116.9 110.1 82.5 95.3</pre>	<pre>(1/s) 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7</pre>
\$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67 03 67 04 67 05 67 06 66 07 66 08 66 09 66 10 66 11 65 12 65 13 64	hr) (n .26 .09 .25 .36 .23 .26 .98 .77 .51 .33 .04 .96 .54 .38 .72 .59 .90	ains) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25 5.31 5.41 5.43 5.40 5.52 5.70 5.73 5.89	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400 25.700 25.000 24.600 24.200 22.200 21.000 19.500 18.500 17.300 15.800 15.000 14.300	I.Area (ha) 0.000 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 16 16 16 16 16 16 16 16 16 16	<pre>) 5.6 5.6 5.6 5.6 5.6444 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9</pre>	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.94 2.94 4.16 2.94 4.16 2.94 2.94 2.94 2.57 2.07 2.07 2.07 1.85	<pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4 104.4 116.9 116.9 116.9 116.9 116.9 116.9 116.9 110.1 82.5 95.3 73.7</pre>	<pre>(1/s) 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7</pre>
\$1.0 \$1.0 \$1.0 \$1.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 75 57 76 56 77 55 78 54 79 52 00 68 01 67 02 67 03 67 04 67 05 67 06 66 07 66 08 66 09 66 10 66 11 65 12 65 13 64 14 64	hr) (n .26 .09 .25 .36 .23 .26 .98 .77 .51 .33 .04 .96 .54 .38 .72 .59	ains) 8.00 8.39 8.68 9.00 9.82 5.15 5.21 5.25 5.31 5.41 5.43 5.40 5.52 5.70 5.73 5.89 5.97	US/IL Σ (m) 22.449 20.131 18.280 17.379 16.629 27.000 26.400 25.700 25.000 24.600 24.200 22.200 21.000 19.500 18.500 17.300 15.800 15.000	I.Area (ha) 0.000 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136	Σ Base Flow (1/s) 83.2 83.2 83.2 83.2 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 16 16 16 16 16 16 16 16 16 16	<pre>) 5.6 5.6 5.6 5.6 5.644 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9</pre>	(m/s) 2.97 2.97 2.57 2.34 1.04 2.07 2.63 2.63 2.63 2.94 2.94 4.16 2.94 4.16 2.94 2.94 2.94 1.62 2.77 2.07 2.07 2.63 1.04	<pre>(1/s) 327.7 327.7 283.6 258.8 115.0 82.5 104.5 104.4 104.4 116.9 116.9 116.9 116.9 116.9 116.9 116.9 110.1 82.5 95.3</pre>	<pre>(1/s) 99.8 99.8 99.8 99.8 99.8 99.8 8.3 8.3 8.3 8.3 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7</pre>

Appendix E - Drainage Maintenance Inspection Checklist

ECOM											Pag	je 9
lidpoint	t				Glo	ounthaune						
lencon	Link				Co.	Cork						-
Basingst	toke,	RG21	7PP		Pro	posed Dra	inage	2			3.45	
Date 10,	-					igned by						ICLO
File GLO			שייעסו	D							Dr	ainac
		UNE C	PDAIL	D		cked by A						
Innovyze	9				Net	work 2020	•1					
			N	etwork	Desig	n Table f	for St	torm				
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Secti	on Type	e Auto Design
S15.016	3.410	0.227	15.0	0.000	0.00	0.0	0.600	0	225	Pipe/	'Conduit	: 💣
S15.017	4.800	0.190	25.3	0.000	0.00	0.0	0.600	0	225	Pipe/	'Conduit	
S15.018	33.051	1.653	20.0	0.000	0.00	0.0	0.600	0	225	Pipe/	'Conduit	
S15.019				0.000	0.00		0.600	0		-	'Conduit	: 💣
S15.020				0.000	0.00		0.600	0		-	'Conduit	
S15.021	8.685			0.000	0.00		0.600	0		-	Conduit	_
S15.022				0.000	0.00		0.600	0		-	Conduit	
S15.023				0.000	0.00		0.600	0		-	Conduit	
S15.024				0.052	0.00		0.600	0		-	Conduit	
\$15.025 \$15.026				0.000 0.000	0.00 0.00		0.600	0		-	'Conduit 'Conduit	
S15.020 S15.027				0.000	0.00		0.600	0		-	Conduit	
S15.027 S15.028				0.000	0.00		0.600	0		-	Conduit	
S15.028				0.000	0.00		0.600	0		-	Conduit Conduit	
S15.029				0.000	0.00		0.600	0		-	'Conduit	
s15.030				0.000	0.00		0.600	0		-	'Conduit	
S15.032				0.000	0.00		0.600	0		-	'Conduit	
S15.033	72.143	0.180	400.8	0.000	0.00		0.600	0		-	'Conduit	
S1 080	86.427	0.144	600 2	0.000	0.00	0 0	0.600	0	450	Pine	'Conduit	: 🔐
	87.004			0.000	0.00		0.600	0		-	Conduit Conduit	
				Net	work 1	Results T	<u>able</u>					
									_	Vel	-	
PN	Ra			US/IL Σ		Σ Base		Add I			Cap	Flow
PN	Ra. (mm/		T.C. mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)		Add 1 (1/		(m/s)	Cap (1/s)	
s15.0	(mm/	'hr) (1 .19	mins) 6.06 1	(m)	(ha) 0.136	Flow (1/s)	(1/s) 0.0	(1/	s) 4.9	(m/s) 3.39	(l/s) 134.9	(1/s) 29.7
S15.0 S15.0	(mm/ 016 64 017 64	'hr) (1 .19 .06	mins) 6.06 1 6.09 1	(m) .1.300 .0.800	(ha) 0.136 0.136	Flow (1/s) 0.0 0.0	(1/s) 0.0 0.0	(1/	s) 4.9 4.9	(m/s) 3.39 2.61	(1/s) 134.9 103.9	(l/s) 29.7 29.7
S15.0 S15.0 S15.0	(mm/ 16 64 17 64 18 63	(hr) (1 .19 .06 .30	mins) 6.06 1 6.09 1 6.28 1	(m) 1.300 0.800 0.000	(ha) 0.136 0.136 0.136	Flow (1/s) 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0	(1/	s) 4.9 4.9 4.9	(m/s) 3.39 2.61 2.94	(1/s) 134.9 103.9 116.9	(1/s) 29.7 29.7 29.7
s15.0 s15.0 s15.0 s15.0	(mm/ 016 64 017 64 018 63 019 63	(hr) (1 .19 .06 .30 .06	mins) 6.06 1 6.09 1 6.28 1 6.34	(m) 1.300 0.800 0.000 8.200	(ha) 0.136 0.136 0.136 0.136	Flow (1/s) 0.0 0.0 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0	(1/	s) 4.9 4.9 4.9 4.9 4.9	(m/s) 3.39 2.61 2.94 3.00	(1/s) 134.9 103.9 116.9 119.3	(1/s) 29.7 29.7 29.7 29.7
S15.0 S15.0 S15.0 S15.0 S15.0	(mm/ 016 64 017 64 018 63 019 63 020 62	(hr) (1 .19 .06 .30 .06 .68	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44	(m) 1.300 0.800 0.000 8.200 7.300	(ha) 0.136 0.136 0.136 0.136 0.136	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0	(1/	4.9 4.9 4.9 4.9 4.9 4.9	(m/s) 3.39 2.61 2.94 3.00 3.07	(1/s) 134.9 103.9 116.9 119.3 122.0	(1/s) 29.7 29.7 29.7 29.7 29.7
S15.0 S15.0 S15.0 S15.0 S15.0 S15.0	(mm/ 116 64 117 64 118 63 119 63 120 62 121 62	(hr) (n .19 .06 .30 .06 .68 .46	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49	(m) 1.300 0.800 0.000 8.200 7.300 5.500	(ha) 0.136 0.136 0.136 0.136 0.136 0.136	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0	(1/	4.9 4.9 4.9 4.9 4.9 4.9 4.9	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 116 64 117 64 118 63 119 63 120 62 121 62 122 62	(hr) (n .19 .06 .30 .06 .68 .46 .46	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153	(ha) 0.136 0.136 0.136 0.136 0.136 0.136	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(1/	<pre>4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9</pre>	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63 1.85	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 116 64 117 64 118 63 119 63 120 62 121 62 122 62 123 61	(hr) (1 .19 .06 .30 .06 .68 .46 .06 .62	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60 6.71	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153 4.000	(ha) 0.136 0.136 0.136 0.136 0.136 0.136 0.136	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(1/	<pre>s) 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9</pre>	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7 95.3	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 116 64 117 64 118 63 119 63 120 62 121 62 122 62 123 61 124 61	(hr) (n .19 .06 .30 .06 .68 .46 .46	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153	(ha) 0.136 0.136 0.136 0.136 0.136 0.136	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(1/	<pre>4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9</pre>	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63 1.85 2.40	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7 95.3 67.3	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 16 64 17 64 18 63 19 63 20 62 21 62 22 62 23 61 24 61 25 57	hr) (1 .19 .06 .30 .06 .68 .46 .06 .62 .11	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60 6.71 6.85	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153 4.000 3.300	<pre>(ha) 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.138</pre>	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(1/	<pre>s) 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9</pre>	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63 1.85 2.40 1.69	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7 95.3 67.3	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 16 64 17 64 18 63 19 63 20 62 21 62 22 62 23 61 24 61 25 57 26 54	<pre>hr) (119063006684606621153</pre>	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60 6.71 6.85 7.91	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153 4.000 3.300 2.800	<pre>(ha) 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.138 0.188 </pre>	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/	<pre>\$) 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 6.2 6.2</pre>	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63 1.85 2.40 1.69 0.83	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7 95.3 67.3 59.0	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/) 116 64 117 64 118 63 119 63 120 62 121 62 122 62 123 61 124 61 125 57 126 54 127 52	<pre>hr) (1</pre>	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60 6.71 6.85 7.91 8.97	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153 4.000 3.300 2.800 2.648	<pre>(ha) 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.138 0.188 0.188 </pre>	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/	<pre>4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 6.2 6.2 6.2</pre>	(m/s) 3.39 2.61 2.94 3.00 2.63 1.85 2.40 1.69 0.83 0.83	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7 95.3 67.3 59.0 59.0	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/) 116 64 117 64 118 63 119 63 120 62 121 62 122 62 123 61 124 61 125 57 126 54 127 52 128 50	<pre>hr) (1 .19 .06 .30 .06 .68 .46 .62 .11 .53 .44 .50 .02</pre>	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60 6.71 6.85 7.91 8.97 9.72	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153 4.000 3.300 2.800 2.648 2.497	<pre>(ha) 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.138 0.188 0.188 0.188 </pre>	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/	<pre>4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 6.2 6.2 6.2 6.2 6.2</pre>	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63 1.85 2.40 1.69 0.83 0.83 0.83	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7 95.3 67.3 59.0 59.0 59.0	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 116 64 117 64 118 63 119 63 120 62 121 62 122 62 122 62 123 61 125 57 126 54 127 52 128 50 129 46 130 45	hr) (1 .19 .06 .30 .06 .68 .46 .06 .62 .11 .53 .44 .50 .02 .71	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60 6.71 6.85 7.91 8.97 9.72 10.77	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153 4.000 3.300 2.800 2.648 2.497 2.390	<pre>(ha) 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.138 0.188 0.188 0.188 0.188 </pre>	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/	 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 6.2 	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63 1.85 2.40 1.69 0.83 0.83 0.83 0.78	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7 95.3 67.3 59.0 59.0 59.0 59.0	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 116 64 117 64 118 63 119 63 120 62 121 62 122 62 122 62 123 61 125 57 126 54 127 52 128 50 129 46 129 46 129 46 130 45 131 42	hr) (1 .19 .06 .30 .06 .68 .46 .06 .62 .11 .53 .44 .50 .02 .71 .46 .99	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60 6.71 6.85 7.91 8.97 9.72 10.77 12.42 13.12 14.65	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153 4.000 3.300 2.800 2.648 2.497 2.390 2.267 2.075 1.993	<pre>(ha) 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.138 0.188 0.188 0.188 0.188 0.188 </pre>	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/	 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 6.2 	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63 1.85 2.40 1.69 0.83 0.83 0.83 0.78 0.78 0.78 0.78 0.78	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7 95.3 67.3 59.0 59.0 59.0 55.0 55.1 55.1 55.1	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 116 64 117 64 118 63 119 63 120 62 121 62 122 62 122 62 123 61 125 57 126 54 127 52 128 50 129 46 129 46 129 46 131 42 132 40	hr) (1 .19 .06 .30 .06 .68 .46 .06 .62 .11 .53 .44 .50 .02 .71 .46 .99 .84	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60 6.71 6.85 7.91 8.97 9.72 10.77 12.42 13.12 14.65 16.19	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153 4.000 3.300 2.800 2.648 2.497 2.390 2.267 2.075 1.993 1.814	<pre>(ha) 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.138 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188 </pre>	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/	 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 6.2 	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63 1.85 2.40 1.69 0.83 0.83 0.83 0.78 0.78 0.78 0.78 0.78 0.78 0.78	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7 95.3 67.3 59.0 59.0 59.0 55.0 55.1 55.1 55.1	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 116 64 117 64 118 63 119 63 120 62 121 62 122 62 122 62 123 61 125 57 126 54 127 52 128 50 129 46 129 46 129 46 131 42 132 40	hr) (1 .19 .06 .30 .06 .68 .46 .06 .62 .11 .53 .44 .50 .02 .71 .46 .99 .84	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60 6.71 6.85 7.91 8.97 9.72 10.77 12.42 13.12 14.65	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153 4.000 3.300 2.800 2.648 2.497 2.390 2.267 2.075 1.993	<pre>(ha) 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.138 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188 </pre>	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/	 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 6.2 	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63 1.85 2.40 1.69 0.83 0.83 0.83 0.78 0.78 0.78 0.78 0.78	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7 95.3 67.3 59.0 59.0 59.0 55.0 55.1 55.1 55.1	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7
\$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0 \$15.0	(mm/ 116 64 117 64 118 63 119 63 120 62 121 62 122 62 123 61 124 61 125 57 126 54 127 52 128 50 129 46 129 46 131 42 132 40 133 38	hr) (1 .19 .06 .30 .06 .68 .46 .06 .62 .11 .53 .44 .50 .02 .71 .46 .99 .84	mins) 6.06 1 6.09 1 6.28 1 6.34 6.44 6.49 6.60 6.71 6.85 7.91 8.97 9.72 10.77 12.42 13.12 14.65 16.19	(m) 1.300 0.800 0.000 8.200 7.300 5.500 5.153 4.000 3.300 2.800 2.648 2.497 2.390 2.267 2.075 1.993 1.814	<pre>(ha) 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.138 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188 </pre>	Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/	 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 6.2 	(m/s) 3.39 2.61 2.94 3.00 3.07 2.63 1.85 2.40 1.69 0.83 0.83 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78	(1/s) 134.9 103.9 116.9 119.3 122.0 104.5 73.7 95.3 67.3 59.0 59.0 59.0 55.0 55.1 55.1 55.1	(1/s) 29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7

©1982-2020 Innovyze

C753 The SuDS Manual Appendix B: Maintenance inspection checklist

Table B.25 SuDS maintenance inspection checklist	
General information	
Site ID	
Site location and co-ordinates (GIS if appropriate)	
Elements forming the SuDS scheme	Approved drawing reference(s)
Inspection frequency	Approved specification reference
Type of development	Specific purpose of any parts of the scheme (eg biodiversity, wildlife and visual aspects)

Inspection date								
	Details	N/X	Action required	Date completed	Details	Y/N	Action required	Date Completed
General inspection items								
Is there any evidence of erosion, channelling, ponding (where not desirable) or other poor hydraulic performance?								
Is there any evidence of accidental spillages, oils, poor water quality, odours or nuisance insects?								
Have any health and safety risks been identified to either the public or maintenance operatives?								
Is there any deterioration in the surface of permeable or porous surfaces (eg rutting, spreading of blocks or signs of ponding water)?								

Ч

ciria

C753 The SuDS Manual Appendix B: Maintenance inspection checklist

Silt/sediment accumulation
Is there any sediment accumulation at inlets (or other defined accumulation zones such as the surface of filter drains or infiltration basins and within proprietary devices)? If yes, state depth (mm) and extent. Is removal requirements and confirm that all waste management requirements have been complied with (consult environmental regulator)
Is surface clogging visible (potentially problematic where water has to soak into the underlying construction or ground (eg underdrained swale or infiltration basin)?
Does permeable or porous surfacing require sweeping to remove silt?
System blockages and litter build-up
Is there evidence of litter accumulation in the system? If yes, is this a blockage risk?
Is there any evidence of any other clogging or blockage of outlets or drainage paths?
Vegetation
Is the vegetation condition satisfactory (density, weed growth, coverage etc)? (Check against approved planting regime.)
Does any part of the system require weeding, pruning or mowing? (Check against maintenance frequency stated in approved design.)
Is there any evidence of invasive species becoming established? If yes, state action required
Infrastructure
Are any check dams or weirs in good condition?
Is there evidence of any accidental damage to the system (eg wheel ruts?)

C753 The SuDS Manual

Appendix B: Maintenance inspection checklist

ciria

Is there any evidence of cross connections or other unauthorised inflows?			
Is there any evidence of tampering with the flow controls?			
Are there any other matters that could affect the performance of the system in relation to the design objectives for hydraulic, water quality, biodiversity and visual aspects? (Specify.)	 		
Other observations			
Information appended (eg photos)			
Suitability of current maintenance regime			
Continue as current Increase maintenance Decrease maintenance			
Next inspection			
Proposed date for next inspection			

m

Appendix F - Glounthaune Drainage Foul Water Network Details

													Page	e 0
lidpoin	t				G	lount	haune							
Alencon	Link				C	o. Co	rk						4	
Basings	toke,	RG21	7PP		P	ropos	ed Dra	ainag	е				Min	10
Date 10	/08/20)21			D	esign	ed by	JC						.TU
File GL	JUNTHA	AUNE U	PDATE	D	C	hecke	d by i	AP					UIC	inag
Innovyz	e				N	etwor	k 2020	0.1						
				FC	DUL S	EWERA	GE DE	SIGN						
				<u>Desi</u>	lgn C	riter	ia fo	r Fou	11					
			Pipe	e Sizes	STAND	ARD Ma	nhole S	Sizes	STANI	DARD				
Fl	dustria ow Per	Person Person Domes	Flow F (l/per ns per tic (l/		2.70 0.00	Min D Mi	Mi Ma	nimum ximum Depth for Au	Back Back for C to De	drop drop Dptimi esign	Heig Heig Isati only	(m/s)	0.00	00 00 75
				Des	igned	with 1	Level S	offits						
			1	Networ	k Des	sign '	Table	for	Foul	<u>-</u>				
PN	Length (m)		-	Area 1 (ha)			ase (1/s)	k (mm)	HYD SECI	DIA (mm)		tion 1		Auto Design
F1.000	25.594	0.450	56.9	0.000	2	2	0.0	1.500	С	150) Pip	e/Cond	duit	ð
F1.001	49.643	1.867	26.6	0.000	()	0.0	1.500	С) Pip	e/Cond	duit	d
										5 150	-			-
F2.000		0.642	60.0	0.000	6) 5)	0.0	1.500 1.500 1.500	С) 150) 150) Pip	e/Cond e/Cond e/Cond	duit	ð
F2.000 F2.001	38.513	0.642	60.0 60.0	0.000	6	5	0.0	1.500	c	 150 150 150 150) Pip) Pip	e/Cond	duit duit	-
F2.000 F2.001 F2.002	38.513 6.339	0.642 0.106 0.946	60.0 60.0 45.0	0.000 0.000 0.000	6	5	0.0 0.0 0.0	1.500 1.500		 150 150 150 150) Pip) Pip) Pip	e/Cond	duit duit duit	ð ď
F2.000 F2.001 F2.002 F1.002	38.513 6.339 42.560	0.642 0.106 0.946 3.983	60.0 60.0 45.0 17.7	0.000 0.000 0.000		5))	0.0 0.0 0.0	1.500 1.500 1.500		$\begin{array}{c} 5 & 150 \\ 0 & 150 \\ 0 & 150 \\ 0 & 150 \\ 0 & 150 \end{array}$) Pip) Pip) Pip) Pip	e/Conc e/Conc e/Conc	duit duit duit duit	0 0 0 0
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001	38.513 6.339 42.560 70.519 41.652 24.370	 0.642 0.106 0.946 3.983 0.694 1.311 	60.0 60.0 45.0 17.7 60.0 18.6	0.000 0.000 0.000 0.000 0.000		5)) 5)	0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500		 150) Pip) Pip) Pip) Pip) Pip) Pip	e/Cond e/Cond e/Cond e/Cond e/Cond	duit duit duit duit duit duit duit	- 6 6 6 6 6
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.001	38.513 6.339 42.560 70.519 41.652 24.370 56.933	 0.642 0.106 0.946 3.983 0.694 1.311 0.712 	60.0 60.0 45.0 17.7 60.0 18.6 80.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000		5)) 5) 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 1.500		$\begin{array}{cccc} & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \end{array}$) Pip) Pip) Pip) Pip) Pip) Pip) Pip	e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond	duit duit duit duit duit duit duit duit	-
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.001	38.513 6.339 42.560 70.519 41.652 24.370	 0.642 0.106 0.946 3.983 0.694 1.311 0.712 	60.0 60.0 45.0 17.7 60.0 18.6 80.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000		5)) 5) 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500		$\begin{array}{cccc} & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \end{array}$) Pip) Pip) Pip) Pip) Pip) Pip) Pip	e/Cond e/Cond e/Cond e/Cond e/Cond	duit duit duit duit duit duit duit duit	- 6 6 6 6 6
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.001	38.513 6.339 42.560 70.519 41.652 24.370 56.933	 0.642 0.106 0.946 3.983 0.694 1.311 0.712 	60.0 60.0 45.0 17.7 60.0 18.6 80.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		5)) 5) 7)	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500		$\begin{array}{cccc} & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \end{array}$) Pip) Pip) Pip) Pip) Pip) Pip) Pip	e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond	duit duit duit duit duit duit duit duit	-
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.002 F3.003	38.513 6.339 42.560 70.519 41.652 24.370 56.933 8.300	 0.642 0.106 0.946 3.983 0.694 1.311 0.712 0.098 	60.0 60.0 45.0 17.7 60.0 18.6 80.0	0.000 0.000 0.000 0.000 0.000 0.000 <u>Νε</u> Σ Βα	6 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5))) () () () () () () () ()	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 <u>'able</u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 Vel) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip	e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond	duit duit duit duit duit duit duit Flo	- 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.002 F3.003	38.513 6.339 42.560 70.519 41.652 24.370 56.933 8.300	<pre>6 0.642 0.106 0.946 3.983 0.694 1.311 0.712 0.098 0.098 0.098 0.098</pre>	60.0 60.0 45.0 17.7 60.0 18.6 80.0 84.7 Σ Area (ha) 0.000	0.000 0.000 0.000 0.000 0.000 0.000 <u>Νε</u> Σ Βα	6 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5))) () () () () () () () ()	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ults T	1.500 1.500 1.500 1.500 1.500 1.500 1.500 <u>able</u> (mm	с с с с с с с с с с с с с с с с с с с	150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 Vel) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip (m/s) 1.16	e/Cond e/	duit duit duit duit duit duit duit Flo (1/s 5 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F2.000 F2.001 F1.002 F3.000 F3.001 F3.002 F3.003 F1.002 F3.003	38.513 6.339 42.560 70.519 41.652 24.370 56.933 8.300 PN C	<pre>6 0.642 9 0.106 9 3.983 9 0.694 9 1.311 9 0.712 9 0.098 0.098 0.098 0.098 0.098</pre>	60.0 60.0 45.0 17.7 60.0 18.6 80.0 84.7 Σ Area (ha) 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 <u>Νε</u> Σ Βα	e (((((((((((((2 2 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 1.500 <u>Cable</u> (mm	c c c c c c c c c c c c c c c c c c c	150 150 Vel .23 .30) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip 1.16 1.70	e/Cond e/	duit duit duit duit duit duit duit Flo (1/s 5 0. 1 0.	1 1 1
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.002 F3.003 F1 F1 F1 F1	38.513 6.339 42.560 70.519 41.652 24.370 56.933 8.300 PN C	<pre>6 0.642 0.106 0.946 3.983 0.694 1.311 0.712 0.098 0.098 0.098 0.098 0.000 0.550 0.6.370</pre>	60.0 60.0 45.0 17.7 60.0 18.6 80.0 84.7 Σ Area (ha) 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 <u>Νε</u> Σ Βα	e c c c c c c c c c c c c c	2 2 6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 1.500 2able (mm 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c c c c c c c c c c c c c c c c c c c	150 1) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip 1.16 1.70	e/Cond e/	duit duit duit duit duit duit duit Flo (1/s 5 0. 1 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.002 F3.003 F1 F1 F1 F1 F1 F1 F2 F2 F2	38.513 6.339 42.560 70.519 41.652 24.370 56.933 8.300 PN C .000 10 .001 10	<pre>0.642 0.106 0.946 3.983 0.694 1.311 0.712 0.098 05/IL (m) 07.000 06.550 06.370 05.728</pre>	60.0 60.0 45.0 17.7 60.0 18.6 80.0 84.7 Σ Area (ha) 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 <u>Νε</u> Σ Βα	tworł	5) 5) 2 2 2 6 6 6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 2 <u>able</u> x P.De (mm	c c c c c c c c c c c c c c c c c c c	150 1) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip 1.16 1.70 1.13 1.13	e/Cond e/	duit duit duit duit duit duit duit flo (1/s 5 0. 1 0. 0 0.	2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.002 F3.003 F1.002 F3.003	38.513 6.339 42.560 70.519 41.652 24.370 56.933 8.300 PN C	<pre>6 0.642 0.106 0.946 3.983 0.694 1.311 0.712 0.098 0.098 0.098 0.098 0.098 0.000 0.550 0.550 0.550 0.550 0.5728 0.5.622</pre>	60.0 60.0 45.0 17.7 60.0 18.6 80.0 84.7 Σ Area (ha) 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 <u>Νε</u> Σ Βα	e c c c c c c c c c c c c c	2 2 6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 1.500 2able (mm 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	c c c c c c c c c c c c c c c c c c c	vel .23 .33) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip 1.16 1.70	e/Cond e/	duit duit duit duit duit duit duit duit	2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.002 F3.003 F1 F1 F1 F1 F2 F2 F2 F2 F2 F1	38.513 6.339 42.560 70.519 41.652 24.370 56.933 8.300 PN C .000 10 .001 10 .001 10 .002 10	<pre>6 0.642 0.106 0.946 3.983 0.694 1.311 0.712 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.094 0.094 0.0946 0.000 0.0946 0.0000 0.000000</pre>	60.0 60.0 45.0 17.7 60.0 18.6 80.0 84.7 Σ Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 <u>Νε</u> Σ Βα	tworł	2 2 6 6 15 17	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 1.500 2able (mm 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	c c c c c c c c c c c c c c c c c c c	vel .23 .33 .49) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip) Pip 1.16 1.70 1.13 1.31 2.09	e/Cond a 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	duit duit duit duit duit duit duit duit	a b b c c c c c c c c c c
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.002 F3.003 F1 F1 F1 F1 F1 F2 F2 F2 F2 F2 F1 F3	38.513 6.339 42.560 70.519 41.652 24.370 56.933 8.300 PN C .000 10 .001 10 .001 10 .002 10 .002 10 .002 10	<pre>6 0.642 0.106 0.946 3.983 0.694 1.311 0.712 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.094 0.098 0.097 0.000 0.097 0.000 0.097 0.000 0.097 0.000 0.097 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000</pre>	60.0 60.0 45.0 17.7 60.0 18.6 80.0 84.7 Σ Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 <u>Νε</u>	tworł c tworł L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5) 5 2 2 2 2 6 6 15 17 5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 1.500 Cable (mm 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	c c c c c c c c c c c c c c c c c c c	vel .23 .30	<pre>) Pip) Pip 1.16 1.70 1.13 1.31 2.09 1.13</pre>	e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond 20.0 20.0 20.0 23.1 36.9 20.0	duit duit duit duit duit duit duit duit	a b b c c c c c c c c c c
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.002 F3.003 F1 F1 F1 F1 F1 F2 F2 F2 F2 F2 F2 F1 F3 F3 F3 F3	38.513 6.339 42.560 70.519 41.652 24.370 56.933 8.300 PN C .000 10 .001 10 .001 10 .002 10	<pre>6 0.642 0.106 0.946 3.983 0.694 1.311 0.712 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.094 0.098 0.097 0.000 0.097 0.000 0.055 0.097 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000</pre>	60.0 60.0 45.0 17.7 60.0 18.6 80.0 84.7 Σ Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 <u>Νε</u>	tworł	2 2 6 6 15 17	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 2able (mm 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	c c c c c c c c c c c c c c c c c c c	vel .23 .33 .49	<pre>) Pip) 1.16 1.70 1.13 1.31 2.09 1.13 2.04</pre>	e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond 20.0 20.0 20.0 23.1 36.9 20.0 36.0	duit duit duit duit duit duit duit duit	a b b c c c c c c c c c c
F2.000 F2.001 F2.002 F1.002 F3.000 F3.001 F3.002 F3.003 F3.003 F1 F1 F1 F1 F1 F2 F2 F2 F2 F2 F2 F1 F3 F3 F3 F3 F3	38.513 6.339 42.560 70.519 41.652 24.370 56.933 8.300 PN C .000 10 .001 10 .001 10 .002 10 .002 10 .002 10 .000 10	<pre>6 0.642 0.106 0.946 3.983 0.694 1.311 0.712 0.0988 0.098 0.098 0.0988 0.098 0.098 0.098 0.098 0.098 0.098 0.0</pre>	60.0 60.0 45.0 17.7 60.0 18.6 80.0 84.7 Σ Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 <u>Νε</u>	twor} 5 2 5 5 1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2 2 6 6 15 17 5 5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 2able (mm 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	c c c c c c c c c c c c c c c c c c c	vel .23 .30 .33 .49 .70	<pre>) Pip) 1.16 1.70 1.13 1.31 2.09 1.13 2.04 0.98</pre>	e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond e/Cond 20.0 20.0 20.0 20.0 23.1 36.9 20.0 20.0 23.1	duit duit duit duit duit duit duit duit	v v v v v v v v

Midpoint Glounthaune Alencon Link Co. Cork Basingstoke, RG21 7PP Proposed Drainage Date 10/08/2021 Designed by JC Checked by AP Checked by AP Thnovyze Network 2020.1 Network 2020.1 Network 2020.1 Prime Colspan="2">Condent 2000 Prime Colspan="2">Condent 2000 Network 2020.1 Network 2020.1 Prime Colspan="2">Condent 2000 Prime Conduct Prime Conduct Prime Conduct Prime Conduct Prime Conduct Prime Conduct Network 2020.0000 0.01500 Colspan="2">Colspan="2">Conduct Prime Conduct Prime Conduct Prime Conduct Prime Conduct Pr	AECOM														Page	e 1
Basingstoke, RG21 7PP Proposed Drainage Discipane by JC Date 10/08/2021 Designed by JC Checkedby JP Innovyze Network 2020.1 Designed by JC Innovyze Network 2020.1 Designed by JP Mark Construction Network 2020.1 Discrete transmission Network 2020.1 P1 000 24 2400 0.00 4 0.0 1.500 o 150 Pipe/Conduit Pipe/Con	Midpoint	t				G	loun	thaune	:							
Date 10/08/2021 Designed by JC Checked by AP Theoryze Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 State 10.000 Oth colspan="2">Network 2020.1 PEP/Cenduit	Alencon	Link				C	o. Co	ork							4	
Date 10/08/2021 Designed by JC Checked by AP Theoryze Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 State 10.000 Oth colspan="2">Network 2020.1 PEP/Cenduit	Basingst	toke,	RG21	7PP		P	ropos	sed Dr	ain	lage					Mic	
File GLOUNTHAUNE UPDATED Checked by AP Innovyze Network 2020.1 Detwork 2020.0 DETWORK 2000.0 DETWORK 2000.0<										-						
The object The obj				PDATE	П		-	-							Ura	inage
Network Design Table for Foul Network Design Table for Foul PN Longth Fall Slope Area Bose N N ND Section Type Aston F1.004 31.110 0.801 29.1 0.000 4 0.0 1.500 0 150 Pipe/Conduit Image: Conduct Test of the con					2											
N Inngh Fall State Inngh N N N N D D A Section Type A Best N	111100 926	=				IN	etwo.	LK ZUZ	0.1	-						
(m) (m) (1:X) (ha) Flow (1/s) (m) SECT (m) Design F3.004 31.110 0.891 34.9 0.000 4 0.0 1.500 0 150 Pipe/Conduit Image: Conduit F1.003 17.730 0.610 29.1 0.000 0 0.1 1.500 0 225 Pipe/Conduit Image: Conduit Imag				<u>1</u>	Networ	k De	sign	Table	fo	r Fc	oul					
F1.003 17.730 0.610 29.1 0.000 0 0.1 1.500 0 225 Pipe/Conduit 0 F1.004 22.6 0.000 0 0.0 1.500 0 225 Pipe/Conduit 0 F1.005 6.540 0.30 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit 0 F1.007 14.483 0.658 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit 0 F1.007 14.483 0.658 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit 0 0 0 0.0 1.500 0 225 Pipe/Conduit 0 0 0 0.0 1.500 0 150 Pipe/Conduit 0	PN	-		-		House							Sect	ion Ty		
F1.004 28.460 1.294 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.005 46.536 2.115 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.006 6.640 0.302 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.007 14.483 0.658 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.008 36.766 1.671 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.003 31.436 1.429 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.011 12.176 0.553 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.000 40.658 0.678 60.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.001 10.781 0.180 60.0 0.000 0 0.0 1.500 o 150 Pipe/Conduit F4.002 5.388 0.973 60.0 0.000 0 0.1 1.500 o 150 Pipe/Conduit F4.003 10.741 60.0 0.000 0 0.0 1.500 o 150 Pipe/Conduit F4.004 3.426 0.057 60.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.005 10.431 0.174 60.0 0.000 0 0.1 1.500 o 225 Pipe/Conduit F4.006 5.491 0.250 22.0 0.000 0 0.1 1.500 o 225 Pipe/Conduit F4.008 5.491 0.020 <td>F3.004</td> <td>31.110</td> <td>0.891</td> <td>34.9</td> <td>0.000</td> <td></td> <td>4</td> <td>0.0</td> <td>1.5</td> <td>00</td> <td>0</td> <td>150</td> <td>Pipe</td> <td>e/Condi</td> <td>uit</td> <td>6</td>	F3.004	31.110	0.891	34.9	0.000		4	0.0	1.5	00	0	150	Pipe	e/Condi	uit	6
F1.004 28.460 1.294 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.005 6.660 0.302 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.007 14.483 0.658 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.008 6.766 1.671 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.008 36.766 1.671 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.008 36.766 1.671 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.011 12.176 0.553 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.011 12.176 0.553 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.002 40.658 0.678 60.0 0.000 6 0.0 1.500 o 150 Pipe/Conduit F4.001 10.781 0.180 60.0 0.000 1 0.0 1.500 o 150 Pipe/Conduit F4.003 4.897 0.082 60.0 0.000 8 0.0 1.500 o 150 Pipe/Conduit F4.004 3.426 0.057 60.0 0.000 8 0.0 1.500 o 150 Pipe/Conduit F4.004 3.426 0.057 60.0 0.000 8 0.0 1.500 o 150 Pipe/Conduit F4.004 3.426 0.057 60.0 0.000 8 0.0 1.500 o 150 Pipe/Conduit F4.004 3.426 0.057 60.0 0.000 8 0.0 1.500 o 150 Pipe/Conduit F4.004 5.491 0.280 2.20 0.000 0 0.0 1.500 o 255 Pipe/Conduit F4.005 10.431 0.174 60.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.006 5.491 0.280 2.20 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.007 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.008 5.491 0.250 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.001 100.200 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.004 99.500 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.004 99.500 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.005 98.000 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.001 98.900 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.002 98.900 0.000 0.0	F1.003	17.730	0.610	29.1	0.000	(0	0.0	1.5	00	0	225	Pipe	/Condi	iit	ð
F1.006 6.640 0.302 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F1.007 14.483 0.658 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F1.008 36.766 1.671 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F1.009 31.433 1.429 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F1.011 12.176 0.553 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F4.001 10.781 0.180 60.0 0.000 0 0.0 1.500 0 150 Pipe/Conduit F4.002 40.658 0.676 60.0 0.000 0 0.1 1.500 0 150 Pipe/Conduit F4.002 40.658 0.678 60.0 0.000 0 0.1 1.500 0 150 Pipe/Conduit F4.002 40.658 0.678 60.0 0.000 0 0.1 1.500 150 Pipe/Conduit F4.003 4.897 0.82 60.0 0.000 0 0.1 1.500 225 Pipe/Conduit F4.005 10.431 0.174 60.0 0.000 0 0.1 1.500 225 Pipe/Conduit F4.006 5.491 0.250 22.0 0.000 0 0.1 1.											0		-			6
F1.007 14.483 0.658 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.008 31.436 1.429 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.010 28.508 1.296 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.011 12.176 0.558 32.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.001 10.781 0.180 60.0 0.000 6 0.0 1.500 o 150 Pipe/Conduit F4.002 58.388 0.973 60.0 0.000 0 0.0 1.500 o 150 Pipe/Conduit F4.002 58.388 0.973 60.0 0.000 0 0.0 1.500 o 150 Pipe/Conduit F4.002 58.388 0.973 60.0 0.000 0 0.0 1.500 o 150 Pipe/Conduit F4.002 58.388 0.973 60.0 0.000 8 0.0 1.500 o 150 Pipe/Conduit F4.004 3.426 0.057 60.0 0.000 8 0.0 1.500 o 150 Pipe/Conduit F4.005 52.919 2.405 22.0 0.000 8 0.0 1.500 o 150 Pipe/Conduit F4.006 52.919 2.405 22.0 0.000 8 0.0 1.500 o 225 Pipe/Conduit F4.008 52.919 2.405 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F3.004 101.561 0.000 0.0 16 0.0 14 0.55 1.49 26.3 0.5 F1.003 100.200 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.004 99.590 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.005 98.000 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.006 95.885 0.000 0.00 33 0.0 16 0.76 2.45 97.5 0.9 F1.007 95.405 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.007 95.405 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.007 95.405 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.001 99.588 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.001 99.588 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.001 99.588 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.001 99.588 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.001 99.588 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.001 99.588 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.001 99.588 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.001 99.588 0.000 0.0 13 0.0 16 0.76 2.45 97.5 0.9 F1.001 99.588 0.000 0.0 0 33 0.0 16 0.76 2.45 97.5 0.9 F1.													-			۰¢
F1.008 36.766 1.611 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.009 31.436 1.429 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.011 12.176 0.553 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.000 40.658 0.678 60.0 0.000 0 0.1 1.500 o 150 Pipe/Conduit F4.001 10.781 0.180 60.0 0.000 0 0.1 1.500 o 150 Pipe/Conduit F4.002 4.897 0.682 60.0 0.000 0 0.1 1.500 o 150 Pipe/Conduit F4.001 0.431 0.174 60.0 0.000 0 0.1 1.500 o 225 Pipe/Conduit F4.005 5.491 0.280 0.400 0 0.1 1.500 o 225 Pipe/Conduit F4.008 5.491 0.280 0.000<													-			۳ ۳
F1.009 31.436 1.429 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.010 28.508 1.296 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.000 40.658 0.678 60.0 0.000 0 0.1 1.500 o 225 Pipe/Conduit F4.001 10.781 0.180 60.0 0.000 0 0.1 1.500 o 150 Pipe/Conduit F4.002 58.388 0.973 60.0 0.000 8 0.0 1.500 o 150 Pipe/Conduit F4.004 3.426 0.57 60.0 0.000 0 0.0 1.500 o 150 Pipe/Conduit F4.005 52.319 2.405 22.0 0.000 0 0.1 1.500 o 225 Pipe/Conduit F4.006 52.919 2.405 22.0 0.000 0 0.1 1.500 o 225 Pipe/Conduit F4.006 52.919 2.406													-			ð
F1.010 22.508 1.296 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F1.011 12.176 0.553 22.0 0.000 0 0.1500 o 225 Pipe/Conduit F4.000 40.658 0.678 60.0 0.000 0 0.1500 o 150 Pipe/Conduit F4.002 58.388 0.973 60.0 0.000 0 0.1500 o 150 Pipe/Conduit F4.004 3.426 0.057 60.0 0.000 0 0.1500 o 150 Pipe/Conduit F4.005 10.431 0.174 60.0 0.000 0 0.1500 o 225 Pipe/Conduit F4.006 5.291 2.40 0.000 0 0.1500 o 225 Pipe/Conduit F4.008 5.491 0.250 22.0 0.000 0 0.1500 o 225 Pipe/Conduit F4.008 5.491 0.261 2.0000 0 0.01 1.500 o 225 Pipe/Conduit																
F1.011 12.176 0.553 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.001 10.781 0.180 60.0 0.000 0 0.1500 o 150 Pipe/Conduit F4.001 10.781 0.180 60.0 0.000 0 0.1500 o 150 Pipe/Conduit F4.003 4.897 0.022 60.0 0.000 0 0.1500 o 150 Pipe/Conduit F4.004 3.426 0.057 60.0 0.000 0 0.1500 o 150 Pipe/Conduit F4.005 5.2919 2.405 22.0 0.000 0 0.1500 o 225 Pipe/Conduit F4.007 10.288 0.468 22.0 0.000 0 0.1500 o 225 Pipe/Conduit 0 F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit 0 F4.003 7.945 0.361 22.0 0.000 0.0													-			
F4.001 10.781 0.180 60.0 0.000 0 0.0 1.500 o 150 Pipe/Conduit F4.002 58.388 0.973 60.0 0.000 0 0.0 1.500 o 150 Pipe/Conduit F4.004 3.428 0.057 60.0 0.000 0 0.0 1.500 o 150 Pipe/Conduit F4.005 10.431 0.174 60.0 0.000 0 0.1 150 Pipe/Conduit F4.007 10.288 0.468 22.0 0.000 0 0.1 500 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit Fipe/Conduit F4.009 7.945 0.361 22.0 0.000 0.0 1.500 o 225 Pipe/Conduit Fi F4.008 5.941 0.250 0.000																
F4.001 10.781 0.180 60.0 0.000 0 0.0 1.500 0 150 Pipe/Conduit F4.002 58.388 0.973 60.0 0.000 8 0.1 150 Pipe/Conduit 150 150 Pipe/Conduit 150	F4.000	40.658	0.678	60.0	0.000		6	0.0	1.5	00	0	150	Pipe	/Condi	uit	a
F4.003 4.897 0.082 60.0 0.000 8 0.0 1.500 o 150 Pipe/Conduit F4.004 3.426 0.057 60.0 0.000 0 0.0 1.500 o 150 Pipe/Conduit F4.005 52.919 2.405 22.0 0.000 8 0.0 1.500 o 225 Pipe/Conduit F4.007 10.288 0.468 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0.0 1.6 0.0 1.4 0.55 Hay A 0.5 F3.004 101.561 0.000 0.0 16 0.76 2.45 97.5 0.9 F1.003 100.200 0.000 0	F4.001	10.781	0.180	60.0	0.000	(0	0.0	1.5	00	0	150	Pipe	/Condi	uit	
F4.004 3.426 0.057 60.0 0.000 0 0.0 1.500 0 150 Pipe/Conduit F4.005 52.919 2.405 22.0 0.000 8 0.0 1.500 0 225 Pipe/Conduit 150 F4.007 10.288 0.468 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F4.008 5.491 0.250 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.600 0 225 Pipe/Conduit 1 F4.009 7.945 0.361 22.0 0.000 0.0 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600	F4.002	58.388	0.973	60.0	0.000			0.0	1.5	00	0		-			ď
F4.005 10.431 0.174 60.0 0.000 0 0.0 1.500 0 150 Pipe/Conduit F4.006 52.919 2.405 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F4.007 10.288 0.468 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F4.007 10.280 0.468 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit Network Results Table Network Results Table N US/IL 2 Area 2 Base Flow (1/s) File Add Flow P.Dep P.Vel Vel (m/s) Cap Flow (1/s) Flow (1/s) File Add Flow P.Dep P.Vel Vel (1/s) Flow (1/s) <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td>-</td><td></td><td></td><td></td></tr<>											0		-			
F4.006 52.919 2.405 22.0 0.000 8 0.0 1.500 0 225 Pipe/Conduit F4.007 10.288 0.468 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.1500 0 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.1500 0 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.1500 0 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0.0 1.00 1.01 1.01 1.90 Pilot Vel Cap Flow F1.003 100.200 0.000 0.0 16 0.06 14 0.55 1.49 26.3 0.5 F1.005 98.000 0.000 0.0 33 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
F4.007 10.288 0.468 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F4.008 5.491 0.250 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit F4.009 7.945 0.361 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit Number of the state of the st													-			
F4.008 5.491 0.250 22.0 0.000 0 0.0 1.500 0 225 Pipe/Conduit Network Results Table N US/IL E Area E Base E Hse Add Flow P.Dep P.Vel Vel Cap Flow F3.004 101.561 0.000 0.0 16 0.0 14 0.55 1.49 26.3 0.5 F1.003 100.200 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.004 99.590 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.005 98.000 0.00 0.33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.010 89.588 0.000 <td></td> <td>-</td> <td></td> <td></td> <td></td>													-			
F4.009 7.945 0.361 22.0 0.00 0.0 1.500 0 225 Pipe/Conduit Detwork Results Table N US/II 2 Area 2 Base 7 (1/s) E Hse Add Flow P.Dep P.Vel (m/s) Vel (m/s) Cap Flow (1/s) F3.004 101.561 0.000 0.0 16 0.0 14 0.55 1.49 26.3 0.5 F1.003 100.200 0.000 0.0 33 0.0 17 0.69 2.13 84.8 0.9 F1.004 99.590 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.006 95.885 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.007 95.405 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.010 89.558 0.000 0.0 33 0.0													-			
PN US/LI E Area E Base E Hse Add Flow P.Nep P.Vel Vel Cap flow F3.004 101.561 0.000 0.0 16 0.0 14 0.55 1.49 26.3 0.5 F1.003 100.200 0.000 0.0 33 0.0 17 0.69 2.13 84.8 0.9 F1.004 99.590 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.005 98.000 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.006 95.885 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.007 95.405 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.001 89.558 0.000 0.0 33 0.0 16 0.76 2.45 9													-			
PNUS/IL (m)C Area (ha)E Base Flow (L/s)E Hse (L/s)Add Flow (mm)P.Dep (ms)P.Vel (ms)Vel (ms)Cap (l/s)Flow (L/s)F3.004101.5610.0000.0160.0140.551.4926.30.5F1.003100.2000.0000.0330.0170.692.1384.80.9F1.00499.5900.0000.0330.0160.762.4597.50.9F1.00598.0000.0000.0330.0160.762.4597.50.9F1.00795.4050.0000.0330.0160.762.4597.50.9F1.00894.1930.0000.0330.0160.762.4597.50.9F1.00991.6450.0000.0330.0160.762.4597.50.9F1.01089.5580.0000.0330.0160.762.4597.50.9F1.01187.4000.0000.060.0100.331.1320.00.2F4.00198.9000.0000.060.0100.331.1320.00.2F4.00198.9000.0000.0140.0150.431.1320.00.4F4.00198.9020.0000.0140.0150.431.1320					Ne	twor	k Res						1			•
(m)(ha)Flow (1/s)(1/s)(mm)(m/s)(m/s)(1/s)(1/s)F3.004101.5610.0000.0160.0140.551.4926.30.5F1.003100.2000.0000.0330.0170.692.1384.80.9F1.00499.5900.0000.0330.0160.762.4597.60.9F1.00598.0000.0000.0330.0160.762.4597.50.9F1.00695.8850.0000.0330.0160.762.4597.50.9F1.00894.1930.0000.0330.0160.762.4597.50.9F1.00991.6450.0000.0330.0160.762.4597.50.9F1.01089.5580.0000.0330.0160.762.4597.50.9F1.01187.4000.0000.060.0100.331.1320.00.2F4.00198.2220.0000.060.0100.331.1320.00.2F4.00397.0690.0000.0140.0150.431.1320.00.4F4.00496.9880.0000.0140.0150.431.1320.00.4F4.00596.9300.0000.0140.0150.4														~		
F1.003100.2000.0000.0330.0170.692.1384.80.9F1.00499.5900.0000.0330.0160.762.4597.60.9F1.00598.0000.0000.0330.0160.762.4597.50.9F1.00695.8850.0000.0330.0160.762.4597.50.9F1.00795.4050.0000.0330.0160.762.4597.50.9F1.00894.1930.0000.0330.0160.762.4597.50.9F1.00991.6450.0000.0330.0160.762.4597.50.9F1.01089.5580.0000.0330.0160.762.4597.50.9F1.01089.5580.0000.0330.0160.762.4597.50.9F1.01187.4000.0000.0330.0160.762.4597.50.9F4.00198.5220.0000.060.0100.331.1320.00.2F4.00298.0420.0000.0140.0150.431.1320.00.2F4.00397.0690.0000.0140.0150.431.1320.00.4F4.00596.9300.0000.0140.01		PN C	•							-				-		
F1.004 99.590 0.000 0.0 33 0.0 16 0.76 2.45 97.6 0.9 F1.005 98.000 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.006 95.885 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.007 95.405 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.019 91.645 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.010 89.558 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.011 87.400 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F4.001 98.900 0.000 0.0 6 0.0 <td< td=""><td>F3</td><td>.004 10</td><td>1.561</td><td>0.000</td><td></td><td>0.0</td><td>16</td><td>0.</td><td>0</td><td>14</td><td>0.5</td><td>55 1</td><td>L.49</td><td>26.3</td><td>0.</td><td>5</td></td<>	F3	.004 10	1.561	0.000		0.0	16	0.	0	14	0.5	55 1	L.49	26.3	0.	5
F1.005 98.000 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.006 95.885 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.007 95.405 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.008 94.193 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.009 91.645 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F1.010 89.558 0.000 0.0 33 0.0 16 0.76 2.45 97.6 0.9 F1.011 87.400 0.000 0.0 33 0.0 16 0.76 2.45 97.5 0.9 F4.001 98.920 0.000 0.0 6 0.0 10 0.33 1.13 20.0 0.2 F4.001 98.222 0.000 0.0 6 0.0	F1	.003 10	0.200	0.000		0.0	33	0.	0	17	0.0	59 2	2.13	84.8	0.	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
F1.00894.1930.0000.0330.0160.762.4597.50.9F1.00991.6450.0000.0330.0160.762.4597.50.9F1.01089.5580.0000.0330.0160.762.4597.60.9F1.01187.4000.0000.0330.0160.762.4597.50.9F4.00198.2220.0000.060.0100.331.1320.00.2F4.00298.0420.0000.060.0100.331.1320.00.2F4.00397.0690.0000.0140.0150.431.1320.00.4F4.00496.9880.0000.0140.0150.431.1320.00.4F4.00596.9300.0000.0140.0150.431.1320.00.4F4.00696.6820.0000.0220.0130.662.4597.50.6F4.00793.0380.0000.0220.0130.662.4597.50.6F4.00890.8250.0000.0220.0130.662.4597.50.6F4.00988.8000.0000.0220.0130.662.4597.50.6																
F1.00991.6450.0000.0330.0160.762.4597.50.9F1.01089.5580.0000.0330.0160.762.4597.60.9F1.01187.4000.0000.0330.0160.762.4597.50.9F4.00098.9000.0000.060.0100.331.1320.00.2F4.00198.2220.0000.060.0100.331.1320.00.2F4.00298.0420.0000.060.0100.331.1320.00.2F4.00397.0690.0000.0140.0150.431.1320.00.4F4.00496.9880.0000.0140.0150.431.1320.00.4F4.00596.9300.0000.0140.0150.431.1320.00.4F4.00696.6820.0000.0220.0130.662.4597.50.6F4.00793.0380.0000.0220.0130.662.4597.50.6F4.00890.8250.0000.0220.0130.662.4597.50.6F4.00988.8000.0000.0220.0130.662.4597.50.6																
F1.01089.5580.0000.0330.0160.762.4597.60.9F1.01187.4000.0000.0330.0160.762.4597.50.9F4.00098.9000.0000.060.0100.331.1320.00.2F4.00198.2220.0000.060.0100.331.1320.00.2F4.00298.0420.0000.060.0100.331.1320.00.2F4.0397.0690.0000.0140.0150.431.1320.00.4F4.0496.9880.0000.0140.0150.431.1320.00.4F4.0596.9300.0000.0140.0150.431.1320.00.4F4.0696.6820.0000.0220.0130.662.4597.50.6F4.0793.0380.0000.0220.0130.662.4597.50.6F4.00890.8250.0000.0220.0130.662.4597.50.6F4.00988.8000.0000.0220.0130.662.4597.50.6																
F1.01187.4000.0000.0330.0160.762.4597.50.9F4.00098.9000.0000.060.0100.331.1320.00.2F4.00198.2220.0000.060.0100.331.1320.00.2F4.00298.0420.0000.060.0100.331.1320.00.2F4.00397.0690.0000.0140.0150.431.1320.00.4F4.00496.9880.0000.0140.0150.431.1320.00.4F4.00596.9300.0000.0140.0150.431.1320.00.4F4.00696.6820.0000.0220.0130.662.4597.50.6F4.00793.0380.0000.0220.0130.662.4597.50.6F4.00890.8250.0000.0220.0130.662.4597.50.6F4.00988.8000.0000.0220.0130.662.4597.50.6																
F4.00198.2220.0000.060.0100.331.1320.00.2F4.00298.0420.0000.060.0100.331.1320.00.2F4.00397.0690.0000.0140.0150.431.1320.00.4F4.00496.9880.0000.0140.0150.431.1320.00.4F4.00596.9300.0000.0140.0150.431.1320.00.4F4.00696.6820.0000.0220.0130.662.4597.50.6F4.00793.0380.0000.0220.0130.662.4597.50.6F4.00890.8250.0000.0220.0130.662.4597.50.6F4.00988.8000.0000.0220.0130.662.4597.50.6																
F4.00198.2220.0000.060.0100.331.1320.00.2F4.00298.0420.0000.060.0100.331.1320.00.2F4.00397.0690.0000.0140.0150.431.1320.00.4F4.00496.9880.0000.0140.0150.431.1320.00.4F4.00596.9300.0000.0140.0150.431.1320.00.4F4.00696.6820.0000.0220.0130.662.4597.50.6F4.00793.0380.0000.0220.0130.662.4597.50.6F4.00890.8250.0000.0220.0130.662.4597.50.6F4.00988.8000.0000.0220.0130.662.4597.50.6	ت ۸	000 0	18 000	0 000		0 0	6	0	0	10	0 1	2 1	12	20 0	0	2
F4.00298.0420.0000.060.0100.331.1320.00.2F4.00397.0690.0000.0140.0150.431.1320.00.4F4.00496.9880.0000.0140.0150.431.1320.00.4F4.00596.9300.0000.0140.0150.431.1320.00.4F4.00696.6820.0000.0220.0130.662.4597.50.6F4.00793.0380.0000.0220.0130.662.4597.50.6F4.00890.8250.0000.0220.0130.672.4697.60.6F4.00988.8000.0000.0220.0130.662.4597.50.6																
F4.00397.0690.0000.0140.0150.431.1320.00.4F4.00496.9880.0000.0140.0150.431.1320.00.4F4.00596.9300.0000.0140.0150.431.1320.00.4F4.00696.6820.0000.0220.0130.662.4597.50.6F4.00793.0380.0000.0220.0130.662.4597.50.6F4.00890.8250.0000.0220.0130.672.4697.60.6F4.00988.8000.0000.0220.0130.662.4597.50.6																
F4.00496.9880.0000.0140.0150.431.1320.00.4F4.00596.9300.0000.0140.0150.431.1320.00.4F4.00696.6820.0000.0220.0130.662.4597.50.6F4.00793.0380.0000.0220.0130.662.4597.50.6F4.00890.8250.0000.0220.0130.672.4697.60.6F4.00988.8000.0000.0220.0130.662.4597.50.6																
F4.00596.9300.0000.0140.0150.431.1320.00.4F4.00696.6820.0000.0220.0130.662.4597.50.6F4.00793.0380.0000.0220.0130.662.4597.50.6F4.00890.8250.0000.0220.0130.672.4697.60.6F4.00988.8000.0000.0220.0130.662.4597.50.6																
F4.00793.0380.0000.0220.0130.662.4597.50.6F4.00890.8250.0000.0220.0130.672.4697.60.6F4.00988.8000.0000.0220.0130.662.4597.50.6	F4	.005 9	96.930	0.000			14			15	0.4	13 1	L.13	20.0	0.	4
F4.00890.8250.0000.0220.0130.672.4697.60.6F4.00988.8000.0000.0220.0130.662.4597.50.6											0.0	56 2	2.45			
F4.009 88.800 0.000 0.0 22 0.0 13 0.66 2.45 97.5 0.6																
©1982-2020 Innovyze	£'4	.009 8	00.800	0.000							0.0	2 00	2.45	91.5	υ.	Ø
					C	1982	-2020) Inno	vyz	е						

ECOM											Pag	re 2
dpoin	t				Gl	ounthaun	е					
Lencon	Link				Co	. Cork					5	
asings	toke,	RG21	7PP		Pr	coposed D	rainag	le			Mi	cro
ate 10,	/08/20	21			De	signed b	y JC					
	OUNTHA		PDATE	D		lecked by	-				Ule	aina
novyze						etwork 20						
- 1			1	Jetwor	k Des	ign Table	e for	Foul				
PN	Length	Fall	_	Area		Base	k	HYD	DIA	Section	Туре	Auto
	(m)	(m)	(1:X)	(ha)		Flow (1/s) (mm)	SECT	(mm)			Design
F4.010	11.088	0.055	200.0	0.000	0	0.	0 1.500	0	225	Pipe/Con	duit	ď
F4.011	8.859	0.044	200.0	0.000	0	0.	0 1.500		225	Pipe/Con	duit	- -
F4.012	36.224	1.228	29.5	0.000	0	0.	0 1.500	0	225	Pipe/Con	duit	Ť
F4.013	13.802	0.230	60.0	0.000	0	0.	0 1.500	0		Pipe/Con		ď
F4.014	68.504	0.343	200.0	0.000	11	0.	0 1.500	0	225	Pipe/Con	duit	ď
F1.012	13.867	0,069	200 0	0.000	0	0	0 1.500	0	225	Pipe/Con	dui+	6
	48.770				6		0 1.500	0		Pipe/Con		
										-		-
	75.458			0.000	9		0 1.500			Pipe/Con		ð
F5.001	12.890	U.215	60.0	0.000	0	0.	0 1.500	0	120	Pipe/Con	duit	ெ
F1.014	14.953	0.075	200.0	0.000	2	0.	0 1.500	0	225	Pipe/Con	duit	ď
F1.015	36.096	1.141	31.6	0.000	2	0.	0 1.500	0		Pipe/Con		ĕ
F1.016	44.321	0.222	200.0	0.000	2	0.	0 1.500	0	225	Pipe/Con	duit	ď
F6 000	36.716	0 612	60 0	0.000	8	0	0 1.500	0	150	Pipe/Con	dui+	ð
	16.755			0.000	0		0 1.500			Pipe/Con		
	18.342			0.000	0		0 1.500			Pipe/Con		
	9.033			0.000	0		0 1.500			Pipe/Con		ď
	24.025			0.000	2		0 1.500			Pipe/Con		ď
F6.005	8.731	0.275	31.7	0.000	0		0 1.500	0		Pipe/Con		ď
				Ne	<u>twork</u>	Results	Table					
		S/IL Σ (m)		Σ Bas Flow (1	e Σ	Hse Add Fl	ow P.De	-		-	Flo	
			(na)			(1/s)	(mm)	(m/s		/S) (1/S)	(1/)	SJ
	010 00			110# (1	/s)	(1/s)				/s) (1/s)		
	4.010 88	8.439	0.000		./s) 0.0	22 0	.0 2	2 0.3	1 0	.81 32.2	2 0	.6
F4	4.011 88	8.439 8.383	0.000		/s) 0.0 0.0	22 0 22 0	.0 2 .0 2	2 0.3 2 0.3	1 0 1 0	.81 32.2 .81 32.2	2 0 2 0	.6 .6
F4 F4	4.011 88 4.012 88	8.439 8.383 8.339	0.000 0.000 0.000		./s) 0.0 0.0 0.0	22 0 22 0 22 0	.0 2 .0 2 .0 1	2 0.3 2 0.3 4 0.6	1 0 1 0 0 2	.81 32.2 .81 32.2 .12 84.2	2 0 2 0 2 0	.6 .6 .6
F4 F4 F4	4.011 88	8.439 8.383 8.339 7.111	0.000		/s) 0.0 0.0	22 0 22 0 22 0 22 0 22 0	.0 2 .0 2 .0 1 .0 1	2 0.3 2 0.3	1 0 1 0 0 2 7 1	.81 32.2 .81 32.2	2 0 2 0 2 0 2 0	.6 .6
F4 F4 F4 F4	4.011 88 4.012 88 4.013 87 4.014 86	3.439 3.383 3.339 7.111 5.881	0.000 0.000 0.000 0.000 0.000		./s) 0.0 0.0 0.0 0.0 0.0	22 0 22 0 22 0 22 0 33 0	.0 2 .0 2 .0 1 .0 1 .0 2	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3	1 0 1 0 0 2 7 1 5 0	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2	2 0 2 0 2 0 0 0 2 0	.6 .6 .6 .9
F4 F4 F4 F1	4.011 88 4.012 88 4.013 87 4.014 86	8.439 8.383 8.339 7.111 5.881 5.539	0.000 0.000 0.000 0.000 0.000		./s) 0.0 0.0 0.0 0.0 0.0 0.0	22 0 22 0 22 0 22 0 33 0 66 0	.0 2 .0 2 .0 1 .0 1 .0 2 .0 3	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4	1 0 1 0 2 7 1 5 0 4 0	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2	2 0 2 0 2 0 0 0 2 0 2 0 2 1	.6 .6 .6 .9
F4 F4 F4 F1	4.011 88 4.012 88 4.013 87 4.014 86	8.439 8.383 8.339 7.111 5.881 5.539	0.000 0.000 0.000 0.000 0.000		./s) 0.0 0.0 0.0 0.0 0.0	22 0 22 0 22 0 22 0 33 0 66 0	.0 2 .0 2 .0 1 .0 1 .0 2 .0 3	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3	1 0 1 0 2 7 1 5 0 4 0	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2	2 0 2 0 2 0 0 0 2 0 2 0 2 1	.6 .6 .6 .9
F4 F4 F4 F1 F1	4.011 88 4.012 88 4.013 87 4.014 86	8.439 8.383 8.339 7.111 5.881 5.539 5.469	0.000 0.000 0.000 0.000 0.000		./s) 0.0 0.0 0.0 0.0 0.0 0.0	22 0 22 0 22 0 33 0 66 0 72 0	.0 2 .0 2 .0 1 .0 1 .0 2 .0 3 .0 3	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4	1 0 1 0 2 7 1 5 0 4 0 5 0	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2	2 0 2 0 2 0 0 0 2 0 2 0 2 0 2 1 2 2	.6 .6 .6 .9
F4 F4 F4 F1 F1 F1	4.011 88 4.012 88 4.013 87 4.014 86 1.012 86 1.012 86	3.439 3.383 3.339 7.111 5.881 5.539 5.469	0.000 0.000 0.000 0.000 0.000 0.000 0.000		<pre>/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	22 0 22 0 22 0 22 0 33 0 66 0 72 0 9 0	.0 2 .0 2 .0 1 .0 1 .0 2 .0 3 .0 3	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4 8 0.4	1 0 1 0 2 7 1 5 0 4 0 5 0 8 1	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2 .81 32.2	2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 2 2 2 2 0 0	.6 .6 .6 .9 .9
F4 F4 F4 F1 F1 F1 F5 F5	4.011 88 4.012 88 4.013 87 4.014 86 1.012 86 1.012 86 5.000 89 5.001 88	8.439 8.383 8.339 7.111 5.881 5.539 5.469 9.647 8.389	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	22 0 22 0 22 0 33 0 66 0 72 0 9 0 9 0 9 0	.0 2 .0 2 .0 1 .0 1 .0 2 .0 3 .0 3 .0 1 .0 1	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4 8 0.4 2 0.3 2 0.3	1 0 1 0 2 7 1 5 0 4 0 5 0 8 1 8 1	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2 .81 32.2 .13 20.0	2 0 2 0 2 0 0 0 2 1 2 2 0 0 0 0 0 0 0 0	.6 .6 .6 .9 .0 .3
F4 F4 F4 F1 F1 F5 F5	A.011 88 A.012 88 A.013 87 A.014 86 L.012 86 L.013 86 S.000 89 S.001 88 L.014 86	8.439 8.383 8.339 7.111 5.881 5.539 5.469 9.647 8.389 5.225	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	22 0 22 0 22 0 22 0 33 0 66 0 72 0 9 0 9 0 83 0	.0 2 .0 2 .0 1 .0 1 .0 2 .0 3 .0 3 .0 1 .0 1 .0 4	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4 8 0.4 2 0.3 2 0.3 1 0.4	1 0 1 0 2 7 1 5 0 4 0 5 0 8 1 8 1 7 0	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2 .81 32.2 .13 20.0 .81 32.2	2 0 2 0 2 0 0 0 2 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2	.6 .6 .6 .9 .9 .0 .3 .3
F4 F4 F4 F1 F1 F5 F5 F5 F1 F1	A.011 88 A.012 88 A.013 87 A.014 86 L.012 86 L.013 86 S.000 89 S.001 88 L.014 86 L.015 86	8.439 8.383 8.339 7.111 5.881 5.539 5.469 9.647 8.389 5.225 5.151	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	22 0 22 0 22 0 33 0 66 0 72 0 9 0 9 0 83 0 85 0	.0 2 .0 2 .0 1 .0 1 .0 2 .0 3 .0 3 .0 1 .0 1 .0 1 .0 4 .0 2	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4 8 0.4 2 0.3 2 0.3 1 0.4 7 0.9	1 0 1 0 2 7 1 5 0 4 0 5 0 4 0 5 0 8 1 8 1 7 0 0 2	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2 .13 20.0 .13 20.0 .81 32.2 .13 20.0 .81 32.2 .81 32.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.6 .6 .6 .9 .0 .3 .3 .4
F4 F4 F4 F1 F1 F5 F5 F5 F1 F1	A.011 88 A.012 88 A.013 87 A.014 86 L.012 86 L.013 86 S.000 89 S.001 88 L.014 86	8.439 8.383 8.339 7.111 5.881 5.539 5.469 9.647 8.389 5.225 5.151	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	22 0 22 0 22 0 33 0 66 0 72 0 9 0 9 0 83 0 85 0	.0 2 .0 2 .0 1 .0 1 .0 2 .0 3 .0 3 .0 1 .0 1 .0 1 .0 4 .0 2	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4 8 0.4 2 0.3 2 0.3 1 0.4	1 0 1 0 2 7 1 5 0 4 0 5 0 4 0 5 0 8 1 8 1 7 0 0 2	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2 .81 32.2 .13 20.0 .81 32.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.6 .6 .9 .9 .0 .3 .3
F4 F4 F1 F1 F1 F5 F5 F1 F1 F1 F1	A.011 88 A.012 88 A.013 87 A.014 86 A.012 86 A.013 87 A.014 86 A.012 86 A.013 87 A.014 86 A.012 86 A.013 86 A.014 86 A.014 86 A.014 86 A.014 86 A.014 86 A.014 86 A.015 86 A.016 85	8.439 8.383 8.339 7.111 5.881 5.539 5.469 9.647 8.389 5.225 5.151 5.010 332	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	22 0 22 0 22 0 33 0 66 0 72 0 9 0 9 0 83 0 85 0 87 0 8 0	.0 2 .0 2 .0 1 .0 1 .0 2 .0 3 .0 3 .0 1 .0 1 .0 4 .0 4 .0 4 .0 4 .0 1	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4 8 0.4 2 0.3 2 0.3 1 0.4 7 0.9 2 0.4 2 0.3 2 0.3 1 0.4 7 0.9 2 0.4 3 0.4 3 0.4 3 0.4 4 0.6 5 0.4 5	1 0 1 0 2 7 1 5 0 4 0 5 0 8 1 8 1 7 0 2 8 0 6 1	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.6 .6 .9 .9 .0 .3 .3 .4 .4
F4 F4 F1 F1 F1 F1 F1 F1 F1 F1 F1	4.011 88 4.012 88 4.013 87 4.014 86 4.012 86 4.013 87 5.000 89 5.001 86 4.014 86 5.001 86 6.015 86 6.016 85 5.000 91 5.001 90	8.439 8.383 8.339 7.111 5.881 5.539 5.469 9.647 8.389 5.225 5.151 5.010 332 0.720	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	22 0 22 0 22 0 33 0 66 0 72 0 9 0 9 0 83 0 85 0 85 0 87 0 88 0 8 0	.0 2 .0 2 .0 1 .0 1 .0 3 .0 3 .0 3 .0 1 .0 1 .0 4 .0 4 .0 4 .0 4 .0 1 .0 1	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4 8 0.4 2 0.3 2 0.3 1 0.4 7 0.9 2 0.4 2 0.3 2 0.3 1 0.4 7 0.9 2 0.4 3 0.4 7 0.4 8 0.4 1 0.6 1 0.4 7 0.4 8 0.4 1 0.6 1 0.4 1 0.6 1 0.4 1 0.6 1 0.4 1 0.6 1 0.4 1 0.4 2 0.3 2 0.3 2 0.4 2	1 0 1 0 2 7 1 5 0 4 0 5 0 8 1 8 1 7 0 2 8 0 6 1 6 1	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2 .13 20.0 .14 32.2 .15 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .13 20.0 .13 20.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.6 .6 .9 .9 .0 .3 .3 .4 .4 .2
F4 F4 F1 F1 F1 F5 F5 F1 F1 F1 F1 F1 F1 F1	4.011 88 4.012 88 4.013 87 4.014 86 4.013 87 5.001 88 6.001 88 6.001 86 6.001 86 6.001 88 6.001 86 6.001 86 6.001 86 6.001 86 6.001 86 6.001 80 6.001 80 6.001 90 5.000 91 5.001 90	8.439 8.383 8.339 7.111 5.881 5.539 5.469 9.647 8.389 5.225 5.151 5.010 332 0.720 0.441	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	22 0 22 0 22 0 33 0 66 0 72 0 9 0 9 0 83 0 85 0 85 0 87 0 88 0 8 0 8 0 8 0 8 0 8 0	.0 2 .0 2 .0 1 .0 1 .0 3 .0 3 .0 3 .0 1 .0 1 .0 4 .0 4 .0 4 .0 4 .0 1 .0 1 .0 1	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4 8 0.4 2 0.3 2 0.3 1 0.4 7 0.9 2 0.4 2 0.3 1 0.4 7 0.9 2 0.4 3 0.4 7 0.9 2 0.3 9 0.5	1 0 1 0 2 7 1 5 0 4 0 5 0 8 1 8 1 7 0 2 8 0 6 1 1 1	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2 .13 20.0 .14 32.2 .15 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .13 20.0 .13 20.0 .13 20.0 .13 20.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.6 .6 .9 .9 .0 .3 .3 .4 .4 .2 .2
F4 F4 F1 F1 F1 F5 F5 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	1.011 88 1.012 88 1.013 87 1.014 86 1.012 86 1.013 86 1.014 86 1.013 86 1.014 86 1.013 86 1.014 86 1.015 86 1.014 86 1.015 86 1.016 85 5.000 91 5.001 90 5.002 90 5.003 89	8.439 8.383 8.339 7.111 5.881 5.539 5.469 9.647 8.389 5.225 5.151 5.010 332 0.720 0.441 9.500			/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	22 0 22 0 22 0 33 0 66 0 72 0 9 0 9 0 83 0 85 0 87 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0	.0 2 .0 2 .0 1 .0 1 .0 2 .0 3 .0 3 .0 1 .0 1 .0 4 .0 4 .0 4 .0 4 .0 1 .0 1 .0 1 .0 1 .0 1	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4 8 0.4 2 0.3 2 0.3 1 0.4 7 0.9 2 0.4 2 0.3 2 0.3 9 0.5 8 0.6	1 0 1 0 2 7 1 5 0 4 0 5 0 4 0 5 0 8 1 8 1 7 0 2 8 0 2 8 0 6 1 1 1 2	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2 .13 20.0 .13 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .91 33.7 .44 43.1	2 0 2 0 2 0 2 0 2 1 2 2 0 0 0 0	.6 .6 .9 .9 .0 .3 .3 .4 .4 .2 .2 .2
F4 F4 F4 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	4.011 88 4.012 88 4.013 87 4.014 86 4.013 87 5.001 88 6.001 88 6.001 86 6.001 86 6.001 88 6.001 86 6.001 86 6.001 86 6.001 86 6.001 86 6.001 80 6.001 80 6.001 90 5.000 91 5.001 90	8.439 8.383 8.339 7.111 5.881 5.539 5.469 9.647 8.389 5.225 5.151 5.010 7.20 9.441 9.500 8.805			/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	22 0 22 0 22 0 33 0 66 0 72 0 9 0 9 0 83 0 85 0 87 0 8 0 8 0 8 0 8 0 8 0 8 0 10 0	.0 2 .0 2 .0 1 .0 1 .0 3 .0 3 .0 3 .0 1 .0 1 .0 4 .0 4 .0 4 .0 4 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 2	2 0.3 2 0.3 4 0.6 7 0.4 7 0.3 7 0.4 8 0.4 2 0.3 2 0.3 1 0.4 7 0.9 2 0.4 2 0.3 1 0.4 7 0.9 2 0.4 3 0.4 7 0.9 2 0.3 9 0.5	1 0 1 0 2 7 1 5 0 4 0 5 0 8 1 8 1 7 0 2 8 0 2 8 0 6 1 1 1 2 5 2	.81 32.2 .81 32.2 .12 84.2 .48 59.0 .81 32.2 .81 32.2 .13 20.0 .14 32.2 .15 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .81 32.2 .13 20.0 .13 20.0 .13 20.0 .13 20.0 .13 20.1	2 0 2 0 2 0 2 0 2 1 2 2 0 0 0 0 0 0	.6 .6 .9 .9 .0 .3 .3 .4 .4 .2 .2

ECOM													Page	e 3
lidpoint						ounth								
lencon						o. Coi								~
asingst			7PP			copose			е				Mid	101
ate 10,	/08/2	021			De	esigne	ed by	JC						ina
ile GLO	OUNTH.	AUNE U	PDATE	D	Ch	necked	d by 1	AP					DIC	
nnovyze	9				Ne	etwor}	c 202	0.1						
			1	Network	Des	ign T	able	for	Foul					
PN	Lengt (m)	h Fall (m)	-	Area H (ha)	ouses	Ba Flow		k (mm)	HYD SECT	DIA (mm)	Sect	ion I		Auto Design
F6.006	76.26	8 0.953	80.0	0.000	7		0.0	1.500	0	150	Pipe	/Cond	luit	6
		1 0.208		0.000	0			1.500	0		Pipe			đ
F6.008	36.72	6 0.288	127.5	0.000	7		0.0	1.500	0	225	Pipe	/Cond	luit	ď
F1.017	31.20	7 1.419	22.0	0.000	0		0.0	1.500	0	225	Pipe	/Cond	luj†	ď
		8 0.903			0			1.500			Pipe			
F1.019	19.86	8 0.903	22.0	0.000	0			1.500	0		Pipe			ĕ.
F7.000	41.53	9 0.692	60.0	0.000	7		0.0	1.500	0	150	Pipe	/Cond	luit	ð
F8.000	35.91	8 0.599	60.0	0.000	7		0.0	1.500	0	150	Pipe	/Cond	luit	ð
		0 0.301		0.000	4			1.500	0		Pipe			ð
		5 0.180 5 0.180		0.000	0			1.500 1.500	0		Pipe Pipe			ď ď
F7.001	22.99	1 0.115	200.0	0.000	3		0.0	1.500	0	225	Pipe	/Cond	luit	ď
F7.002	50.14	3 0.251	200.0	0.000	12		0.0	1.500	0	225	Pipe	/Cond	luit	ď
		8 0.028 2 0.078			0 0			1.500 1.500	0 0		Pipe Pipe			5 5
				Net	work	Resu	lts 1	<u>Table</u>						
	PN	US/IL X		Σ Base Flow (1/		Hse Ad			-			Cap	Flor	
		36.682).0).0	17 17	0.0		7 0.4			17.3		
		35.729 35.446			0.0	17 24	0.0		7 0.4 1 0.3			40.4		
F1	.017 8	621	0 000	C							.45	97.6	3.	1
		94.021	0.000	0	0.0	111	0.0	2	8 1.1	1 2	.45	91.0		
	.018 8	32.194				111 111	0.0		8 1.1 0 1.1			97.5		6
			0.000	C	.5) 3	0 1.1	6 2	.45		3.	
F1	.019	32.194	0.000	C	.5	111	0.0) 3	0 1.1 0 1.1	62 62	.45 .45	97.5	3. 3.	6
F1 F7	.019	32.194 79.791	0.000 0.000 0.000).5).5).0	111 111 7 7	0.0 0.0 0.0	0 3 0 3 0 1 0 1	0 1.1 0 1.1 1 0.3 1 0.3	6 2 6 2 5 1 5 1	.45 .45 .13 .13	97.5 97.5 20.0 20.0	3. 3. 0.	6 2 2
F1 F7 F8	019 7.000 8.000	32.194 79.791 78.050	0.000 0.000 0.000).5).5	111 111 7	0.0 0.0 0.0	0 3 0 3 0 1 0 1	0 1.1 0 1.1 1 0.3 1 0.3	6 2 6 2 5 1 5 1	.45 .45 .13	97.5 97.5 20.0 20.0	3. 3. 0.	6 2 2
F1 F7 F8 F9 F8	019 7.000 8.000 8.000 8.000 8.000 8.001 8	32.194 79.791 78.050 31.075 31.345 80.476	0.000 0.000 0.000 0.000 0.000		0.5 0.5 0.0 0.0 0.0	111 111 7 7 4 11	0.0) 3) 3) 1) 1) 1) 1) 1	0 1.1 0 1.1 1 0.3 1 0.3 8 0.2 3 0.4	6 2 6 2 5 1 5 1 9 1 0 1	.45 .45 .13 .13 .13 .13	97.5 97.5 20.0 20.0 20.0 20.0	3. 3. 0. 0. 0.	6 2 2 1 3
F1 F7 F8 F9 F8	019 7.000 8.000 8.000 8.000 8.000 8.001 8	32.194 79.791 78.050 31.075 31.345	0.000 0.000 0.000 0.000 0.000).5).5).0).0	111 111 7 7 4	0.0) 3) 3) 1) 1) 1) 1) 1	0 1.1 0 1.1 1 0.3 1 0.3 8 0.2	6 2 6 2 5 1 5 1 9 1 0 1	.45 .45 .13 .13 .13 .13	97.5 97.5 20.0 20.0 20.0	3. 3. 0. 0. 0.	6 2 2 1 3
F1 F7 F8 F9 F8 F8	019 7.000 8.000 8.000 8.001 8.001 8.002	32.194 79.791 78.050 31.075 31.345 80.476	0.000 0.000 0.000 0.000 0.000 0.000		0.5 0.5 0.0 0.0 0.0	111 111 7 7 4 11	0.0	30 33 30 31 31 31 32 31 33 31 34 31 35 31 36 31 37 31 38 31 39 31 39 31 39 31 39 31 39 31 39 31 39 31 39 31 39 31	0 1.1 0 1.1 1 0.3 1 0.3 8 0.2 3 0.4	6 2 6 2 5 1 5 1 9 1 0 1 0 1	.45 .45 .13 .13 .13 .13 .13	97.5 97.5 20.0 20.0 20.0 20.0 20.0	3. 3. 0. 0. 0. 0.	6 2 1 3 3
F1 F7 F8 F8 F8 F8 F8 F7 F7 F7	019 7.000 8.000 8.000 8.001 8.001 8.002 7.001 7.001	 32.194 79.791 78.050 81.075 81.345 80.476 78.900 77.283 77.168 	0.000 0.000 0.000 0.000 0.000 0.000 0.000		0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0	111 111 7 7 4 11 11 21 33		3) 3) 3) 3) 1) 1 1) 1 1) 1 1) 1 1) 1 1) 1 1) 1 1) 1 1) 1 1) 2 1) 2 1) 2	0 1.1 0 1.1 1 0.3 1 0.3 8 0.2 3 0.4 3 0.4 1 0.3 7 0.3	6 2 6 2 5 1 5 1 9 1 0 1 0 1 1 0 5 0	.45 .45 .13 .13 .13 .13 .13 .13 .81 .81	97.5 97.5 20.0 20.0 20.0 20.0 20.0 32.2 32.2	3. 3. 0. 0. 0. 0. 0. 0. 0. 0.	6 2 1 3 3 6 9
F1 F7 F8 F8 F8 F8 F8 F7 F7 F7 F7	019 7.000 8.000 8.000 8.001 8.001 8.002 7.001 7.001 7.002 7.003	 32.194 79.791 78.050 81.075 81.345 80.476 78.900 77.283 77.168 76.917 	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	111 111 7 7 4 11 11 21 33 33		3) 3) 3) 3) 3) 1 1) 1 1) 1 1) 1 1) 1 1) 1 1) 2 2) 2 2) 2 2) 2	0 1.1 0 1.1 1 0.3 1 0.3 8 0.2 3 0.4 3 0.4 1 0.3 7 0.3 7 0.3	6 2 6 2 5 1 5 1 9 1 0 1 0 1 1 0 5 0 5 0	.45 .45 .13 .13 .13 .13 .13 .13 .81 .81 .81	97.5 97.5 20.0 20.0 20.0 20.0 20.0 32.2 32.2 32.2	3. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0.	6 2 2 1 3 3 6 9 9
F1 F7 F8 F8 F8 F8 F8 F7 F7 F7 F7	019 7.000 8.000 8.000 8.001 8.001 8.002 7.001 7.001 7.002 7.003	 32.194 79.791 78.050 81.075 81.345 80.476 78.900 77.283 77.168 	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0	111 111 7 7 4 11 11 21 33		3) 3) 3) 3) 3) 1 1) 1 1) 1 1) 1 1) 1 1) 1 1) 2 2) 2 2) 2 2) 2	0 1.1 0 1.1 1 0.3 1 0.3 8 0.2 3 0.4 3 0.4 1 0.3 7 0.3	6 2 6 2 5 1 5 1 9 1 0 1 0 1 1 0 5 0 5 0	.45 .45 .13 .13 .13 .13 .13 .13 .81 .81 .81	97.5 97.5 20.0 20.0 20.0 20.0 20.0 32.2 32.2 32.2	3. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0.	6 2 2 1 3 3 6 9 9

ECOM													Page	4
lidpoint	:				G	lount	haune							
Alencon	Link				С	o. Co	rk						4	
Basingst	oke,	RG21	7pp		P	ropos	ed Dra	ainag	е				Mic	
Date 10/						-	ed by	-					Mic	
File GLC			UPDATE	D		2	d by i						Dla	inag
Innovyze				_			k 202							
	-			lotuor			Table							
PN	Tonat	h Eal				-		k			Sect	ion T		N to
PN	Lengt (m)	(m)	1 Slope (1:X)		House		ase (1/s)	k (mm)	HYD SECT		Secti	101 1		Auto Design
)1 199.8			0		1.500			Pipe/			6
			55 199.9			9		1.500			Pipe/			đ
F1.022 F1.023)8 22.0	0.000		0 2		1.500			Pipe/			۰¢
								1.500	0		Pipe,			ď
F10.000	87.70	5 1.40	60.0	0.000		8	0.0	1.500	0	150	Pipe/	/Conc	duit	ð
F1.024	21.46	51 0.9	76 22.0	0.000		1	0.0	1.500	0	225	Pipe/	/Conc	duit	6
F1.025	17.60	0.80	00 22.0	0.000		1	0.0	1.500	0	225	Pipe/	/Conc	duit	ð
E11 000	EO 10	1 2 01	17 17 0	0 000		2	0.0	1 500	-	150		10	4	
F11.000 F11.001				0.000	1	2 2		1.500			Pipe/ Pipe/			ð ď
F11.001 F11.002				0.000		2		1.500			Pipe/			o f
			L2 200.0			2		1.500	0		Pipe/			÷.
F11.004	5.96	57 0.03	30 200.0	0.000		0	0.0	1.500	0	225	Pipe/	/Conc	duit	ð
F1.026	18.38	85 0.83	36 22.0	0.000		4	0.0	1.500	0	225	Pipe/	/Cond	duit	ď
			L8 150.0			3		1.500			Pipe/			.
F1.028	15.50	3 0.70	05 22.0	0.020		0	0.0	1.500	0	225	Pipe/	/Conc	duit	ð
			96 22.0			2		1.500			Pipe/			ď
F1.030 F1.031			52 22.0	0.000		0 0		1.500	0 0		Pipe/ Pipe/			e de la companya de l
JI	5.52	., 0.1	20						0	220	TTPG/		~~ ~ ~	ď
		/					ults 1					_		
	PN	US/IL (m)	Σ Area (ha)	Σ Ba Flow (Hse A	Add Flor (1/s)	w P.Deg (mm)	-			Cap 1/s)	Flow (1/s	
		76.811			0.5	144	0.	0 5	7 0.5	7 0		32.2		6
		76.710			0.5	153	0.		9 0.5			32.2		
		76.445			0.5	153	0.		4 1.2 [°] 4 1.2 [°]			97.5		
E.]	.023	74.455	0.000		0.5	155	0.					97.5	4.	9
F1(0.000	74.290	0.000		0.0	8	0.	0 1	2 0.3	6 1	.13	20.0	0.	2
		71.964			0.5	164	0.		5 1.2			97.6		
r1	.025	70.345	0.000		0.5	165	0.	0 3	5 1.2	92	.45	97.5	5.	1
r J		74.500	0.000		0.0	2	0.		5 0.3	4 2	.11	37.3		
	.000		0 000		0.0	14	0.		4 0.4			23.1		
F11 F11	.001	71.483			<u> </u>	26	Ο.	0 1	4 0.7			97.5	0.	
F11 F11 F11	.001 .002	70.393	0.000		0.0			n ^	F 0 0		01	22 0	<u>^</u>	0
F11 F11 F11 F11	.001 .002 .003	70.393 68.137	0.000		0.0	28	0.		5 0.3			32.2		
F11 F11 F11 F11	.001 .002 .003	70.393	0.000						5 0.3 5 0.3			32.2 32.2		
F11 F11 F11 F11 F11	L.001 L.002 L.003 L.004	70.393 68.137 68.026 67.545	0.000 0.000 0.000		0.0 0.0 0.5	28 28 197	0. 0.	02 03	5 0.3 8 1.3	4 0 6 2	.81 .45	32.2 97.6	0. 6.	8
F11 F11 F11 F11 F11 F11 F1	L.001 L.002 L.003 L.004 L.026 L.027	70.393 68.137 68.026 67.545 66.709	0.000 0.000 0.000 0.000 0.000		0.0 0.0 0.5 0.5	28 28 197 220	0.0	02 03 06	5 0.3 8 1.3 5 0.7	4 0 6 2 1 0	.81 .45 .94	32.2 97.6 37.2	0. 6. 6.	8 0 7
F11 F11 F11 F11 F11 F1 F1 F1 F1	L.001 L.002 L.003 L.004 L.026 L.027 L.028	70.393 68.137 68.026 67.545 66.709 66.391	0.000 0.000 0.000 0.000 0.000 0.020		0.0 0.0 0.5 0.5 0.5	28 28 197 220 220	0.0	0 2 0 3 0 6 0 4	5 0.3 8 1.3 5 0.7 0 1.4	4 0 6 2 1 0 0 2	.81 .45 .94 .45	32.2 97.6 37.2 97.6	0. 6. 6.	8 0 7 7
F11 F11 F11 F11 F11 F1 F1 F1 F1 F1	L.001 L.002 L.003 L.004 L.026 L.027 L.028 L.029	70.393 68.137 68.026 67.545 66.709	0.000 0.000 0.000 0.000 0.000 0.020 0.020		0.0 0.0 0.5 0.5	28 28 197 220	0.0	0 2 0 3 0 6 0 4 0 4	5 0.3 8 1.3 5 0.7	4 0 6 2 1 0 0 2 0 2	.81 .45 .94 .45 .45	32.2 97.6 37.2	0. 6. 6. 6.	8 0 7 7 7

AECOM													Page	3
Midpoint					Gl	ountl	haune							
Alencon	Link	2			Co	. Co:	rk						2	~
Basingst	oke,	RG21	7PP		Pr	opose	ed Dra	ainag	е				Mic	
Date 10/	08/2	021			De	signe	ed by	JC						
File GLC	UNTH	IAUNE (JPDATE	C		2	d by A						Uld	ina
Innovyze	<u>,</u>						k 2020							
111110 v y 20					NC	CWOIL	1 2020							
			N	etwor	k Des:	ign T	able	for E	<u>oul</u>					
PN	Leng (m)		Slope (1:X)	Area (ha)	Houses		ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Sec	tion 1		Auto Desig
F1.032	39.7	27 0.26	5 149.9	0.000	12		0.0	1.500	0	225	Pip	e/Cond	duit	ď
F1.033	20.5	71 0.13	7 150.2	0.000	6		0.0	1.500	0	225	Pipe	e/Conc	duit	ď
F12.000	29.9	01 0.49	8 60.0	0.000	6		0.0	1.500	0	150	Pipe	e/Cond	duit	ð
F12.001					9			1.500	0		-	e/Cond		0
F12.002					3			1.500	0		-	e/Cond		.
F12.003	10.7	32 0.07	9 135.0	0.000	0		0.0	1.500	0	150	Pipe	e/Cond	duit	ď
F1.034	7.8	26 0.35	6 22.0	0.000	0		0.0	1.500	0	225	Pipe	e/Cond	duit	ď
F1.035	12.5	80 0.57	2 22.0	0.000	0			1.500	0		-	e/Cond		ĕ
F1.036	17.0	00 0.77	3 22.0	0.000	0			1.500	0		-	e/Cond		ĕ
F1.037	40.9	79 1.86	3 22.0	0.000	0		0.0	1.500	0	225	Pipe	e/Cond	duit	ð
F1.038	14.1	80 0.64	5 22.0	0.000	0			1.500	0			e/Cond		ď
F1.039	10.6	17 0.48	3 22.0	0.000	0		0.0	1.500	0	225	Pipe	e/Cond	duit	- -
		80 0.36		0.000	0		0.0	1.500	0	225	Pipe	e/Cond	duit	6
		80 0.36		0.000	0			1.500	0		-	e/Cond		6
		84 0.49		0.000	0			1.500	0			e/Cond		ð ð
		37 0.52		0.000	0			1.500	0		-	e/Cond		6
		48 0.88		0.000	1			1.500	0		-	e/Cond		<u>_</u>
		25 0.45		0.000	1			1.500			-	e/Cond		ď
		25 0.45		0.000	0			1.500	0			e/Cond		ď
F1.047	1/.0.	26 0.80	1 22.0	0.000	0			1.500	0	225	ьтре	e/Conc	JUIL	ď
				Ne	twork	Resu	ILLS I	able						
1	PN	•	Σ Area (ha)	Σ Bas Flow (1			dd Flow	-	-			Cap (1/s)		
		•	(ha)		l/s)		dd Flow	(mm)	-	s) (m	/s)	-	(1/s	5)
F1	.032	(m)	(ha) 0.020		l/s) 0.5		dd Flow (l/s)	(mm)	(m/s	s) (m 72 0	/s)	(1/s) 37.2	(1/s 7.	s)
F1 F1	.032	(m) 62.499	(ha) 0.020 0.020		l/s) 0.5 0.5 0.0	234	dd Flow (1/s) 0.((mm) 0 6 0 6	(m/s 6 0. ⁻ 7 0. ⁻	s) (m 72 0 72 0	/s) .94	(1/s) 37.2 37.2	(1/s 7. 7. 0.	;) 1.3 .2
F1 F1 F12	.032	(m) 62.499 62.234	(ha) 0.020 0.020 0.000		1/s) 0.5 0.5 0.0 0.0	234 240 6 15	dd Flow (1/s) 0.(0.(0.(0.((mm)) 6) 6) 1) 1	(m/s 6 0.7 7 0.7 0 0.3 9 0.3	s) (m 72 0 72 0 83 1 83 0	.94 .94 .13 .75	(1/s) 37.2 37.2 20.0 13.3	(1/s 7. 7. 0. 0.	1 .3 .2 .4
F1 F12 F12 F12 F12	032 033 2.000 2.001 2.002	(m) 62.499 62.234 63.381 62.883 62.478	(ha) 0.020 0.020 0.000 0.000 0.000		1/s) 0.5 0.5 0.0 0.0 0.0	234 240 6 15 18	dd Flow (l/s) 0.0 0.0 0.0 0.0	(mm)) 6) 6) 1) 1) 2	(m/s 6 0.7 7 0.7 0 0.3 9 0.3	 (m) 72 0 72 0 33 1 33 0 35 0 	/s) .94 .94 .13 .75 .75	(1/s) 37.2 37.2 20.0 13.3 13.3	(1/s 7. 7. 0. 0. 0.	• 1 . 3 . 2 . 4 . 5
F1 F12 F12 F12 F12	032 033 2.000 2.001 2.002	(m) 62.499 62.234 63.381 62.883	(ha) 0.020 0.020 0.000 0.000 0.000		1/s) 0.5 0.5 0.0 0.0	234 240 6 15	dd Flow (1/s) 0.(0.(0.(0.((mm)) 6) 6) 1) 1) 2	(m/s 6 0.7 7 0.7 0 0.3 9 0.3	 (m) 72 0 72 0 33 1 33 0 35 0 	.94 .94 .13 .75	(1/s) 37.2 37.2 20.0 13.3 13.3	(1/s 7. 7. 0. 0. 0.	• 1 . 3 . 2 . 4 . 5
F1 F12 F12 F12 F12	032 033 2.000 2.001 2.002 2.003	(m) 62.499 62.234 63.381 62.883 62.478	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.000 0.000</pre>		L/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0	234 240 6 15 18	dd Flow (l/s) 0.0 0.0 0.0 0.0	(mm)) 6) 6) 1) 1) 2) 2	(m/s 6 0.7 7 0.7 0 0.3 9 0.3	s) (m 72 0 72 0 33 1 33 0 35 0 35 0	/s) .94 .94 .13 .75 .75	(1/s) 37.2 37.2 20.0 13.3 13.3 13.3	(1/s 7. 7. 0. 0. 0. 0.	 1 3 2 4 5 5
F1 F12 F12 F12 F12 F12 F12 F1 F1	.032 .033 2.000 2.001 2.002 2.003 .034 .035	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.000 0.000 0.020</pre>		L/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5	234 240 6 15 18 18 258 258	dd Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mm)) 6) 6) 6) 1) 2) 2) 2) 2) 4) 4) 4	(m/s 6 0. 7 0. 9 0. 0 0. 0 0. 0 0.	 s) (m 72 0 72 0 72 0 33 1 33 0 35 0 35 0 46 2 	/s) .94 .94 .13 .75 .75 .75	<pre>(1/s) 37.2 37.2 20.0 13.3 13.3 97.6 97.6</pre>	(1/s 7. 7. 0. 0. 0. 0. 7. 7.	5) 1 3 2 4 5 5 8 8 8
F1 F12 F12 F12 F12 F12 F12 F1 F1 F1	032 033 2.000 2.001 2.002 2.003 034 035 036	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891 59.319	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.000 0.020 0.020 0.020</pre>		L/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5	234 240 6 15 18 18 258	dd Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mm)) 6) 6) 6) 1) 2) 2) 2) 2) 4) 4) 4	(m/s) 6 0.7 7 0.7 9 0.3 9 0.3 0 0.3 1.4 3 1.4 3 1.4	s) (m 72 0 72 0 33 1 33 0 35 0 35 0 46 2 46 2 46 2 46 2 46 2 46 2	<pre>/s) . 94 . 94 . 13 . 75 . 75 . 75 . 45 . 45 . 45</pre>	<pre>(1/s) 37.2 37.2 20.0 13.3 13.3 97.6 97.6 97.6</pre>	(1/s 7. 7. 0. 0. 0. 0. 0. 7. 7. 7.	 1 3 2 4 5 5 8 8 8
F1 F12 F12 F12 F12 F12 F12 F12 F1 F1 F1	032 033 2.000 2.001 2.002 2.003 034 035 036 037	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891 59.319 58.546	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.000 0.020 0.020 0.020 0.020</pre>		1/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5	234 240 6 15 18 18 258 258 258 258 258	dd Flor (1/s) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.((mm)) 6) 6) 1) 1) 2) 2) 2) 4) 4) 4) 4) 4	(m/s) 6 0.7 7 0.7 0 0.3 9 0.3 0 0.3 0 0.3 1.4 3 1.4 3 1.4 3 1.4	s) (m 72 0 72 0 33 1 33 0 35 0 35 0 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2	<pre>/s) .94 .94 .13 .75 .75 .75 .45 .45 .45 .45</pre>	<pre>(1/s) 37.2 37.2 20.0 13.3 13.3 97.6 97.6 97.6 97.6</pre>	(1/s 7. 7. 0. 0. 0. 0. 7. 7. 7. 7. 7.	 3 2 4 5 5 8 8 8 8 8
F1 F12 F12 F12 F12 F12 F12 F12 F1 F1 F1 F1 F1	032 033 2.000 2.001 2.002 2.003 034 035 036 037 038	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891 59.319 58.546 54.970	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.000 0.020 0.020 0.020 0.020 0.020 0.020</pre>		1/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5	234 240 6 15 18 18 258 258 258 258 258 258 258	dd Flov (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm)) 6) 6) 1) 1) 2) 2) 2) 2) 4) 4) 4) 4) 4) 4) 4	(m/s 6 0.7 7 0.7 9 0.3 0 0.3 0 0.3 1.4 3 1.4 3 1.4 3 1.4 3 1.4	s) (m 72 0 72 0 33 1 33 1 33 0 35 0 35 0 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2	<pre>/s) . 94 . 94 . 13 . 75 . 75 . 75 . 45 . 45 . 45 . 45 . 45</pre>	<pre>(1/s) 37.2 37.2 20.0 13.3 13.3 97.6 97.6 97.6 97.6 97.6</pre>	(1/s 7. 7. 0. 0. 0. 0. 7. 7. 7. 7. 7. 7. 7.) 1 3 2 4 5 5 8
F1 F12 F12 F12 F12 F12 F12 F12 F12 F1 F1 F1 F1 F1	.032 .033 2.000 2.001 2.002 2.003 .034 .035 .036 .037 .038 .039	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891 59.319 58.546 54.970 52.058	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.020 0.020 0.020 0.020 0.020 0.020 0.020</pre>		1/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5	234 240 6 15 18 18 258 258 258 258 258 258 258 258	dd Flor (1/s) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.((mm)) 6) 6) 1) 1) 2) 2) 2) 4) 4) 4) 4) 4) 4) 4) 4	(m/s) 6 0.7 7 0.7 9 0.3 0 0.3 1.4 3 1.4 3 1.4 3 1.4 3 1.4 3 1.4	s) (m 72 0 72 0 33 1 33 1 33 0 35 0 35 0 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2	<pre>/s) .94 .94 .13 .75 .75 .75 .45 .45 .45 .45 .45 .45</pre>	(1/s) 37.2 37.2 20.0 13.3 13.3 13.3 97.6 97.6 97.6 97.6 97.6 97.6	(1/s 7. 7. 0. 0. 0. 0. 0. 7. 7. 7. 7. 7. 7. 7.	 >) 1 3 2 4 5 5 8
F1 F12 F12 F12 F12 F12 F12 F12 F12 F1 F1 F1 F1 F1 F1	.032 .033 2.000 2.001 2.002 2.003 .034 .035 .036 .037 .038 .039 .040	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891 59.319 58.546 54.970 52.058 49.800	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020</pre>		1/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5	234 240 6 15 18 18 258 258 258 258 258 258 258 258 258 25	dd Flor (1/s) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.((mm)) 6) 6) 1) 1) 2) 2) 2) 2) 4) 4) 4) 4) 4) 4) 4) 4	(m/s) 6 0.7 7 0.7 9 0.3 0 0.3 1.4 3 1.4 3 1.4 3 1.4 3 1.4 3 1.4 3 1.4 3 1.4	s) (m 72 0 72 0 33 1 33 0 35 0 35 0 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2	<pre>/s) .94 .94 .13 .75 .75 .75 .45 .45 .45 .45 .45 .45 .45 .45</pre>	<pre>(1/s) 37.2 37.2 20.0 13.3 13.3 13.3 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6</pre>	(1/s 7. 7. 0. 0. 0. 0. 0. 7. 7. 7. 7. 7. 7. 7. 7.	 >) 1 3 2 4 5 5 8 9 9
F1 F12 F12 F12 F12 F12 F12 F12 F12 F1 F1 F1 F1 F1 F1 F1	.032 .033 2.000 2.001 2.002 2.003 .034 .035 .036 .037 .038 .039 .040 .041	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891 59.319 58.546 54.970 52.058 49.800 48.133	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020</pre>		1/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5	234 240 6 15 18 18 258 258 258 258 258 258 258 258 258 25	dd Flor (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0 6 0 1 0 1 0 2 0 2 0 2 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	(m/s) 6 0.7 7 0.7 9 0.3 0 0.3 1.4 3 1.4 3 1.4 3 1.4 3 1.4 3 1.4 3 1.4 3 1.4 3 1.4 3 1.4 3 1.4	s) (m 72 0 72 0 33 1 33 0 35 0 35 0 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2	/s) .94 .94 .13 .75 .75 .45 .45 .45 .45 .45 .45 .45 .4	<pre>(1/s) 37.2 37.2 20.0 13.3 13.3 13.3 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.5 97.6</pre>	(1/s 7. 7. 0. 0. 0. 0. 0. 0. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	 >) 1 3 2 4 5 5 8 9 9
F1 F12 F12 F12 F12 F12 F12 F12 F12 F1 F1 F1 F1 F1 F1 F1 F1	.032 .033 2.000 2.001 2.002 2.003 .034 .035 .036 .037 .038 .039 .040 .041 .042	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891 59.319 58.546 54.970 52.058 49.800 48.133 46.270	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020</pre>		1/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5	234 240 6 15 18 18 258 258 258 258 258 258 258 258 258 25	dd Flor (1/s) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.((mm)) 6) 6) 1) 1) 2) 2) 2) 4) 4) 4) 4) 4) 4) 4) 4	(m/s) 6 0.7 7 0.7 9 0.3 0 0.3 1.4 3 1.4 3 1.4	s) (m 72 0 72 0 33 1 33 0 35 0 35 0 46 2	/s) .94 .94 .13 .75 .75 .45 .45 .45 .45 .45 .45 .45 .4	(1/s) 37.2 37.2 20.0 13.3 13.3 13.3 97.6	(1/s 7. 7. 0. 0. 0. 0. 0. 0. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	 >) 1 3 2 4 5 5 8 9 9
F1 F12 F12 F12 F12 F12 F12 F12 F12 F12 F	.032 .033 2.000 2.001 2.002 2.003 .034 .035 .036 .037 .038 .039 .040 .041 .042 .043	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891 59.319 58.546 54.970 52.058 49.800 48.133 46.270 44.000	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020</pre>		1/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5	234 240 6 15 18 18 258 258 258 258 258 258 258 258 258 25	dd Flor (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0 6 0 1 0 1 0 2 0 2 0 2 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	(m/s) 6 0.7 7 0.7 9 0.3 0 0.3 1.4 3 1.4 3 1.4 4 3 1.4 3 1.4 4 5 1.4 5 1.	s) (m 72 0 72 0 33 1 33 0 35 0 35 0 46 2	/s) .94 .94 .13 .75 .75 .45 .45 .45 .45 .45 .45 .45 .4	(1/s) 37.2 37.2 20.0 13.3 13.3 13.3 97.6 97.5 97.6 97.6 97.5	(1/s 7. 7. 0. 0. 0. 0. 0. 0. 0. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	 >) 1 3 2 4 5 5 8 9 9
F1 F12 F12 F12 F12 F12 F12 F12 F12 F12 F	.032 .033 2.000 2.001 2.002 2.003 .034 .035 .036 .037 .038 .039 .040 .041 .042 .043 .044	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891 59.319 58.546 54.970 52.058 49.800 48.133 46.270 44.000 42.750	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.020</pre>		1/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5	234 240 6 15 18 18 258 258 258 258 258 258 258 258 258 25	dd Flor (1/s) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.((mm)) 6) 6) 1) 1) 2) 2) 2) 2) 4) 4) 4) 4) 4) 4) 4) 4	(m/s) 6 0.7 7 0.7 9 0.3 0 0.3 1.4 3 1.4 3 1.4	s) (m 72 0 72 0 33 1 33 0 35 0 35 0 46 2 47 2	/s) .94 .94 .13 .75 .75 .45 .45 .45 .45 .45 .45 .45 .4	(1/s) 37.2 37.2 20.0 13.3 13.3 13.3 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.5 97.5 97.5	(1/s 7. 7. 0. 0. 0. 0. 0. 0. 0. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	 >) 1 3 2 4 5 5 8 9 9
F1 F12 F12 F12 F12 F12 F12 F12 F12 F12 F	.032 .033 2.000 2.001 2.002 2.003 .034 .035 .036 .037 .038 .039 .040 .041 .042 .043 .044 .045	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891 59.319 58.546 54.970 52.058 49.800 48.133 46.270 44.000 42.750 41.127	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.020</pre>		1/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5	234 240 6 15 18 18 258 258 258 258 258 258 258 258 258 25	dd Flor (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0 6 0 1 0 1 0 2 0 2 0 2 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	(m/s) 6 0.7 7 0.7 9 0.3 0 0.3 1.4 3 1.4 3 1.4	s) (m 72 0 72 0 72 0 33 1 33 0 35 0 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 47 2 47 2	<pre>/s) .94 .94 .13 .75 .75 .45 .45 .45 .45 .45 .45 .45 .45 .45 .4</pre>	(1/s) 37.2 37.2 20.0 13.3 13.3 13.3 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.5 97.5 97.5 97.5	(1/s 7. 7. 0. 0. 0. 0. 0. 0. 0. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	 >) 1 3 2 4 5 5 8 9 9
F1 F12 F12 F12 F12 F12 F12 F12 F12 F12 F	.032 .033 2.000 2.001 2.002 2.003 .034 .035 .036 .037 .038 .039 .040 .041 .042 .043 .044 .045 .046	(m) 62.499 62.234 63.381 62.883 62.478 62.363 62.097 59.891 59.319 58.546 54.970 52.058 49.800 48.133 46.270 44.000 42.750 41.127	<pre>(ha) 0.020 0.020 0.000 0.000 0.000 0.020</pre>		1/s) 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5	234 240 6 15 18 18 258 258 258 258 258 258 258 258 258 25	dd Flor (1/s) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.((mm)) 6) 6) 1) 1) 2) 2) 2) 2) 4) 4) 4) 4) 4) 4) 4) 4	(m/s) 6 0.7 7 0.7 9 0.3 0 0.3 1.4 3 1.4 3 1.4	s) (m 72 0 72 0 33 1 33 0 35 0 35 0 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 46 2 47 2 47 2 47 2	/s) .94 .94 .13 .75 .75 .45 .45 .45 .45 .45 .45 .45 .4	(1/s) 37.2 37.2 20.0 13.3 13.3 13.3 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.5 97.5 97.5 97.5 97.5	(1/s 7. 7. 7. 0. 0. 0. 0. 0. 0. 0. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	 >) 1 3 2 4 5 5 8 9 9

												Page	e 6
idpoint					Gl	ount	haune						
lencon Li	nk				Co	. Co	rk					4	
asingstok	e, F	G21 -	7PP		Pr	opos	ed Dra	ainag	е			M	
ate 10/08							ed by						cio
ile GLOUN			PDATEI	C		-	d by A					Uſċ	inag
nnovyze							k 2020						
11110vyze					110	CWOI	K 2020						
			N	etwork	Des	ian '	Table	for H	oul				
	-		-	Area H	louses		ase	k			Section	Туре	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(1/s)	(mm)	SECT	(mm)			Design
F1.048 12	.056	0.548	22.0	0.000	0		0.0	1.500	0	225	Pipe/Cor	nduit	6
F1.049 5	.111	0.232	22.0	0.000	0		0.0	1.500	0		Pipe/Cor		ř
F1.050 16	.414	0.746	22.0	0.000	0		0.0	1.500	0	225	Pipe/Cor	nduit	ď
F1.051 5	.587	0.254	22.0	0.000	0		0.0	1.500	0	225	Pipe/Cor	nduit	ď
F1.052 48	.992	2.227	22.0	0.000	0		0.0	1.500	0	225	Pipe/Cor	nduit	ð
F1.053 81	.507	3.705	22.0	0.000	0		0.0	1.500	0		Pipe/Cor		ě
F1.054 45			22.0	0.000	0			1.500	0		Pipe/Cor		ĕ
F1.055 29	.537	1.343	22.0	0.000	0			1.500	0		Pipe/Cor		ĕ
F1.056 42				0.000	0			1.500	0		Pipe/Cor		ĕ
F1.057 40				0.000	0			1.500	0		Pipe/Cor		ĕ
F1.058 36			22.0	0.000	0			1.500	0		Pipe/Cor		ĕ
F1.059 22				0.000	0			1.500	0		Pipe/Cor		
F1.060 25				0.000	0			1.500	0		Pipe/Con		ď
F1.061 88				0.000	0			1.500	0		Pipe/Cor		ď
	a -						-						-
F13.000 12				0.000	4			1.500	0		Pipe/Cor		ð
F13.001 12				0.000	0			1.500	0		Pipe/Cor		ð
F13.002 8				0.000	1			1.500	0		Pipe/Cor		6
		0.164		0.000	0			1.500	0		Pipe/Cor		6
		0.389		0.000	0			1.500	0		Pipe/Cor		d
F13.005 20				0.000	0			1.500	0		Pipe/Cor		of
F13.006 12	.564	0.628	20.0	0.000	0		0.0	1.500	0	150	Pipe/Cor	nduit	ď
				Net	work	Res	ults I	able					
PN			Area	Σ Base			Add Flor						
		(m)	(ha)	Flow (1	/S)		(1/s)	(mm)	(m/s)) (m	/s) (1/s)) (1/	5)
F1.04			0.020		0.5	260	0.0			72			.8
F1.04			0.020		0.5	260	0.0		3 1.4		.45 97.		.8
F1.05			0.020		0.5	260	0.0		3 1.4		.45 97.		.8
F1.05			0.020		0.5	260	0.0		3 1.4		.45 97.		.8
	52 33		0.020		0.5	260	0.0		3 1.4		.45 97.		.8
F1.05				1	N E	260		1 1	·	/ 2	.45 97.		.8
F1.05			0.020		0.5		0.0						.8
F1.05 F1.05	54 27	.334	0.020	(0.5	260	0.0) 4	3 1.4	7 2	.45 97.		
F1.05 F1.05 F1.05	54 27 55 25	.334 .250	0.020 0.020	(0.5 0.5	260 260	0.0) 4) 4	3 1.4 [°] 3 1.4 [°]	72 72	.45 97.	6 7	.8
F1.05 F1.05 F1.05 F1.05	54 27 55 25 56 <mark>23</mark>	.334 .250 .000	0.020 0.020 0.020		0.5 0.5 0.5	260 260 260	0.0 0.0 0.0) 4) 4) 4	3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷	72 72 72	.45 97. .45 97.	6 7 5 7	.8 .8
F1.05 F1.05 F1.05 F1.05 F1.05	54 27 55 25 56 23 57 19	.334 .250 .000 .678	0.020 0.020 0.020 0.020		0.5 0.5 0.5 0.5	260 260 260 260	0.0 0.0 0.0) 4) 4) 4) 4	3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷	7 2 7 2 7 2 7 2 7 2	.45 97. .45 97. .45 97.	6 7 5 7 5 7	.8 .8 .8
F1.05 F1.05 F1.05 F1.05 F1.05 F1.05	54 27 55 25 56 23 57 19 58 16	.334 .250 .000 .678 .254	0.020 0.020 0.020 0.020 0.020		0.5 0.5 0.5 0.5 0.5	260 260 260 260 260	0.0 0.0 0.0 0.0	0 4 0 4 0 4 0 4 0 4 0 4	3 1.4 [°] 3 1.4 [°] 3 1.4 [°] 3 1.4 [°] 3 1.4 [°]	7 2 7 2 7 2 7 2 7 2 7 2	.45 97. .45 97. .45 97. .45 97.	6 7 5 7 5 7 5 7 5 7	.8 .8 .8
F1.05 F1.05 F1.05 F1.05 F1.05 F1.05 F1.05	54 27 55 25 56 23 57 19 58 16 59 13	.334 .250 .000 .678 .254 .674	0.020 0.020 0.020 0.020 0.020 0.020		0.5 0.5 0.5 0.5 0.5 0.5	260 260 260 260 260 260	0.0 0.0 0.0 0.0 0.0) 4) 4) 4) 4) 4) 4) 4	3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	.45 97. .45 97. .45 97. .45 97. .45 97.	6 7 5 7 5 7 5 7 5 7 5 7	.8 .8 .8 .8 .8
F1.05 F1.05 F1.05 F1.05 F1.05 F1.05 F1.05 F1.06	54 27 55 25 56 23 57 19 58 16 59 13 50 12	.334 .250 .000 .678 .254 .674 .350	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020		0.5 0.5 0.5 0.5 0.5 0.5 0.5	260 260 260 260 260 260 260	0.0 0.0 0.0 0.0 0.0 0.0	0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	3 1.4 [°] 3 1.4 [°]	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	.45 97. .45 97. .45 97. .45 97. .45 97. .45 97.	6 7 5 7 5 7 5 7 5 7 5 7 5 7	.8 .8 .8 .8 .8 .8
F1.05 F1.05 F1.05 F1.05 F1.05 F1.05 F1.05	54 27 55 25 56 23 57 19 58 16 59 13 50 12	.334 .250 .000 .678 .254 .674 .350	0.020 0.020 0.020 0.020 0.020 0.020		0.5 0.5 0.5 0.5 0.5 0.5	260 260 260 260 260 260	0.0 0.0 0.0 0.0 0.0	0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷ 3 1.4 ⁷	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	.45 97. .45 97. .45 97. .45 97. .45 97.	6 7 5 7 5 7 5 7 5 7 5 7 5 7	.8 .8 .8 .8 .8
F1.05 F1.05 F1.05 F1.05 F1.05 F1.05 F1.05 F1.06	54 27 55 25 56 23 57 19 58 16 59 13 50 12 51 11	.334 .250 .000 .678 .254 .674 .350 .199	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020		0.5 0.5 0.5 0.5 0.5 0.5 0.5	260 260 260 260 260 260 260	0.0 0.0 0.0 0.0 0.0 0.0	0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	3 1.4 [°] 3 1.4 [°]	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 9 2	.45 97. .45 97. .45 97. .45 97. .45 97. .45 97.	6 7 5 7 5 7 5 7 5 7 5 7 5 7 9 7	.8 .8 .8 .8 .8 .8
F1.05 F1.05 F1.05 F1.05 F1.05 F1.05 F1.06 F1.06	54 27 55 25 56 23 57 19 58 16 59 13 50 12 51 11 00 27	.334 .250 .000 .678 .254 .674 .350 .199 .300	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	260 260 260 260 260 260 260 260	0.0 0.0 0.0 0.0 0.0 0.0 0.0) 4) 4) 4) 4) 4) 4) 4) 4) 4	3 1.4° 3 1.4° 3 1.4° 3 1.4° 3 1.4° 3 1.4° 3 1.4° 7 1.2°	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 9 2 9 1	.45 97. .45 97. .45 97. .45 97. .45 97. .45 97. .45 97. .45 97. .45 97. .45 97. .04 80.	6 7 5 7 5 7 5 7 5 7 5 7 5 7 9 7 0 0	. 8 . 8 . 8 . 8 . 8 . 8 . 8
F1.05 F1.05 F1.05 F1.05 F1.05 F1.05 F1.06 F1.06 F1.06	54 27 55 25 56 23 57 19 58 16 59 13 50 12 51 11 00 27 01 26	.334 .250 .000 .678 .254 .674 .350 .199 .300 .400	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	260 260 260 260 260 260 260 260) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4	3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 8 0.2'	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 9 2 9 2 9 1 9 1	.45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .04 80	6 7 5 7 5 7 5 7 5 7 5 7 5 7 9 7 0 0	.8 .8 .8 .8 .8 .8 .8 .8
F1.05 F1.05 F1.05 F1.05 F1.05 F1.05 F1.06 F1.06 F1.06 F13.00	54 27 55 25 56 23 57 19 58 16 59 13 50 12 51 11 00 27 01 26 02 26	.334 .250 .000 .678 .254 .674 .350 .199 .300 .400 .199	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	260 260 260 260 260 260 260 260 260 260) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 0	3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 8 0.2' 8 0.2'	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 9 2 9 1 9 1 1 1	.45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .13 20 .13 20	6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 9 7 0 0 0 0 0 0	.8 .8 .8 .8 .8 .8 .8 .8 .1 .1
F1.05 F1.05 F1.05 F1.05 F1.05 F1.05 F1.06 F1.06 F1.06 F13.00 F13.00 F13.00	54 27 55 25 56 23 57 19 58 16 59 13 50 12 51 11 00 27 01 26 02 26 03 25	.334 .250 .000 .678 .254 .674 .350 .199 .300 .400 .199 .600	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.000 0.000 0.000		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	260 260 260 260 260 260 260 260 260 4 4 5 5) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 0) 0	3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 8 0.22 8 0.22 9 0.3	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 9 2 9 1 9 1 1 1 6 1	.45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .13 20 .13 20 .13 20	6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 9 7 0 0 0 0 0 0 0 0 0 0 5 0	.8 .8 .8 .8 .8 .8 .8 .8 .1
F1.05 F1.05 F1.05 F1.05 F1.05 F1.05 F1.06 F1.06 F1.06 F13.00 F13.00 F13.00 F13.00	54 27 55 25 56 23 57 19 58 16 59 13 50 12 51 11 00 27 01 26 02 26 03 25 04 25	.334 .250 .000 .678 .254 .674 .350 .199 .300 .400 .199 .600 .200	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.000 0.000 0.000 0.000		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0	260 260 260 260 260 260 260 260 260 260) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 0) 0) 0	3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 3 1.4' 8 0.22' 8 0.22' 8 0.22' 9 0.33' 9 0.30'	7 2 7 2 7 2 7 2 7 2 7 2 9 2 9 1 1 1 5 1	.45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .45 97 .13 20 .13 20 .13 20 .39 24	6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 9 7 0 0 0 0 0 0 0 0 5 0 7 0	.8 .8 .8 .8 .8 .8 .8 .1 .1 .1

Link bke, RG21 08/2021 UNTHAUNE U Length Fall (m) (m)	UPDATEI <u>N</u>	C P D D C	esign hecke	rk ed Dra ed by d by A k 2020	JC AP	2			Micro Drain
oke, RG21 08/2021 JNTHAUNE (Length Fall	UPDATEI <u>N</u>	P D C N	ropos esign hecke	ed Dra ed by d by A k 2020	JC AP	2			
08/2021 JNTHAUNE (Length Fall	UPDATEI <u>N</u>	D C	esign hecke	ed by d by A k 2020	JC AP	2			
JNTHAUNE U	<u>N</u>	D C	hecke	d by A k 2020	ΔP				
Length Fall	<u>N</u>	N	etwor	k 2020					Uldill
-		N	etwor	k 2020					
-					• -				
-		etwork De:	sign 1						
-	Slope		-	able	for F	<u>oul</u>			
. , ()	(1:X)	Area House (ha)		ase (1/s)	k (mm)		IA Sec m)	tion T	ype Au Des
3.502 0.17	5 20.0	0.000	0	0.0	1.500	o 1	.50 Pip	e/Cond	uit 🛛
7.465 0.14	9 50.0	0.000	0	0.0	1.500	0 1	50 Pip	e/Cond	
8.549 0.57			0		1.500		.50 Pip		uit 📢
9.972 0.39			0		1.500		50 Pip		uit 📢
5.377 0.41			0		1.500		.50 Pip		
22.976 1.14 5.168 0.25			0		1.500 1.500		.50 Pip .50 Pip		
5.168 0.25 17.706 0.35			0		1.500		.50 Pip .50 Pip		
5.965 0.39			0		1.500		.50 Pip .50 Pip		
18.054 0.60			0		1.500		.50 Pip .50 Pip		uit (
4.311 0.21			0		1.500		.50 Pip		
15.739 1.21	1 13.0	0.000	0		1.500		.50 Pip		uit
30.184 1.44			0		1.500		.50 Pip		uit 📢
10.751 0.21			0		1.500		.50 Pip		luit 📢
8.966 0.44			0		1.500		.50 Pip		
10.539 0.52			0		1.500		.50 Pip		
37.749 1.88 [°] 59.935 0.26			0		1.500 1.500		.50 Pip 25 Pip		
3.181 0.01			0		1.500		25 Pip 25 Pip		
N US/IL (m)	Σ Area (ha)	<u>Networ</u> Σ Base Σ Flow (1/s)		dd Flow (1/s)		P.Vel (m/s)		Cap (1/s)	Flow (1/s)
007 22.500	0.000	0.0	5	0.0) 7	0.45	1.96	34.7	0.1
008 22.000	0.000	0.0	5						0.1
009 20.800	0.000	0.0	5					40.1	0.1
010 19.000		0.0	5					31.0	0.1
011 17.100			5						0.1
015 13.000									0.1
		0.0	5					28.3	0.1
017 11.000	0.000	0.0	5					34.8	0.1
018 10.100	0.000	0.0	5	0.0) 7		2.44	43.1	0.1
	0.000	0.0	5	0.0			1.92	33.9	0.1
019 8.800			_	0.0) 9				
019 8.800 020 7.300	0.000	0.0	5						
0198.8000207.3000217.000	0.000	0.0	5	0.0					
0198.8000207.3000217.0000225.300	0.000 0.000 0.000	0.0	5 5	0.0) 7	0.45	1.97	34.7	0.1
0198.8000207.3000217.000	0.000	0.0	5	0.0) 7) 7	0.45 0.45	1.97 1.96	34.7 34.7	0.1
008 009 010 011 012 013 014 015 016	22.500 22.000 20.800 19.000 17.100 15.500 14.200 13.900 13.000 12.000	22.500 0.000 22.000 0.000 20.800 0.000 19.000 0.000 17.100 0.000 15.500 0.000 14.200 0.000 13.900 0.000 12.000 0.000	22.500 0.000 0.0 22.000 0.000 0.0 20.800 0.000 0.0 19.000 0.000 0.0 17.100 0.000 0.0 15.500 0.000 0.0 14.200 0.000 0.0 13.900 0.000 0.0 12.000 0.000 0.0	22.500 0.000 0.0 5 22.000 0.000 0.0 5 20.800 0.000 0.0 5 19.000 0.000 0.0 5 17.100 0.000 0.0 5 15.500 0.000 0.0 5 14.200 0.000 0.0 5 13.900 0.000 0.0 5 12.000 0.000 0.0 5	22.500 0.000 0.0 5 0.0 22.000 0.000 0.0 5 0.0 20.800 0.000 0.0 5 0.0 19.000 0.000 0.0 5 0.0 17.100 0.000 0.0 5 0.0 15.500 0.000 0.0 5 0.0 14.200 0.000 0.0 5 0.0 13.900 0.000 0.0 5 0.0 12.000 0.000 0.0 5 0.0	22.500 0.000 0.0 5 0.0 7 22.000 0.000 0.0 5 0.0 7 20.800 0.000 0.0 5 0.0 7 19.000 0.000 0.0 5 0.0 7 17.100 0.000 0.0 5 0.0 7 15.500 0.000 0.0 5 0.0 7 14.200 0.000 0.0 5 0.0 7 13.900 0.000 0.0 5 0.0 7 12.000 0.000 0.0 5 0.0 7	22.500 0.000 0.0 5 0.0 7 0.45 22.000 0.000 0.0 5 0.0 9 0.33 20.800 0.000 0.0 5 0.0 7 0.49 19.000 0.000 0.0 5 0.0 7 0.49 19.000 0.000 0.0 5 0.0 7 0.52 17.100 0.000 0.0 5 0.0 7 0.45 14.200 0.000 0.0 5 0.0 7 0.45 13.900 0.000 0.0 5 0.0 7 0.45 13.000 0.000 0.0 5 0.0 7 0.45 12.000 0.000 0.0 5 0.0 7 0.49	22.500 0.000 0.0 5 0.0 7 0.45 1.96 22.000 0.000 0.0 5 0.0 9 0.33 1.24 20.800 0.000 0.0 5 0.0 9 0.33 1.24 20.800 0.000 0.0 5 0.0 7 0.49 2.27 19.000 0.000 0.0 5 0.0 7 0.49 2.27 19.000 0.000 0.0 5 0.0 7 0.52 2.44 15.500 0.000 0.0 5 0.0 7 0.45 1.97 14.200 0.000 0.0 5 0.0 7 0.45 1.96 13.900 0.000 0.0 5 0.0 7 0.49 2.27 12.000 0.000 0.0 5 0.0 7 0.49 2.27 12.000 0.000 0.0 5 0.0 8 0.39 1.60	22.500 0.000 0.0 5 0.0 7 0.45 1.96 34.7 22.000 0.000 0.0 5 0.0 9 0.33 1.24 21.9 20.800 0.000 0.0 5 0.0 7 0.49 2.27 40.1 19.000 0.000 0.0 5 0.0 7 0.49 2.27 40.1 19.000 0.000 0.0 5 0.0 7 0.49 2.27 40.1 17.100 0.000 0.0 5 0.0 7 0.45 1.97 31.0 17.100 0.000 0.0 5 0.0 7 0.45 1.97 34.7 14.200 0.000 0.0 5 0.0 7 0.45 1.96 34.7 13.900 0.000 0.0 5 0.0 7 0.45 1.96 34.7 13.000 0.000 0.0 5 0.0 7 0.49 2.27 40.1 12.000 0.000 0.0 5 0.0 8 0.39 1.60 28.3

Appendix G - StormTech MC3500 & MC4500

STORMTECH MC-3500 CHAMBER

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

STORMTECH MC-3500 CHAMBER (not to scale)

STORMTECH MC-3500 END CAP (not to scale)

Nominal Chamber Specifications

Size (L x W x H) 90" x 77" x 45" 2.286 mm x 1.956 mm x 1.143 mm

Chamber Storage 109.9 ft³ (3.11 m³)

Min. Installed Storage*

178.9 ft³ (5.06 m³)

134 lbs (60.8 kg)

Weight

End Cap Storage 14.9 ft³ (1.30 m³)

Size (LxWxH)

26.5" x 71" x 45.1"

Min. Installed Storage* 46.0 ft³ (1.30 m³)

Weight

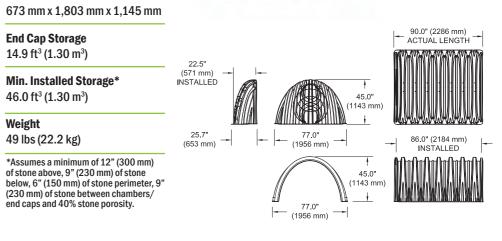
49 lbs (22.2 kg)

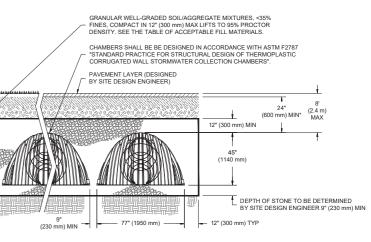
Shipping 15 chambers/pallet 7 end caps/pallet 7 pallets/truck

6" (150 mm) MIN

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below chambers, 9" (230 mm) of stone between chambers/end caps and 40% stone porosity.

EMBEDMENT STONE SHALL BE A CLEAN, CRUSHED AND ANGULAR STONE WITH AN AASHTO M43 DESIGNATION BETWEEN #3 AND #4 CHAMBERS SHALL MEET ASTM F2418 "STANDARD SPECIFICATION FOR POLYPROPLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". ADS GEOSYTHETICS 601T NON-WOVEN GEOTEXTILE ALL AROUND CLEAN, CRUSHED ANGULAR EMBEDMENT STONE PERIMETER STONE EXCAVATION WAI (CAN BE SLOPED OR VERTICAL)


> SITE DESIGN ENGINEER IS RESPONSIBLE FOR ENSURING THE REQUIRED BEARING CA


MC-350

END CAP

Nominal End Cap Specifications

MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 30 (750 mm).

StormTech

MC-3500 CHAMBER SPECIFICATION

STORAGE VOLUME PER CHAMBER FT³ (M³)

	Bare Chamber			r and Stone Depth in. (mm)	
	Storage ft ³ (m ³)	9" (230 mm)	12" (300 mm)	15" (375 mm)	18" (450 mm)
MC-3500 Chamber	109.9 (3.11)	178.9 (5.06)	184.0 (5.21)	189.2 (5.36)	194.3 (5.5)
MC-3500 End Cap	14.9 (.42)	46.0 (1.33)	47.7 (1.35)	49.4 (1.40)	51.1 (1.45)
Neter Accumac 0"	(220 mm) rou	v opening 40%	otono norocity 10	" (200 mm) otono	ahovo and includa

Note: Assumes 9" (230 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume.

AMOUNT OF STONE PER CHAMBER

	Stone Foundation Depth								
ENGLISH TONS (yds ³)	9"	12"	15"	18"					
MC-3500 Chamber	9.1 (6.4)	9.7 (6.9)	10.4 (7.3)	11.1 (7.8)					
MC-3500 End Cap	4.1 (2.9)	4.3 (3.0)	4.5 (3.2)	4.5 (3.2)					
METRIC KILOGRAMS (m ³)	230 mm	300 mm	375 mm	450 mm					
MC-3500 Chamber	8,220 (4.9)	8,831 (5.3)	9,443 (5.6)	10,054 (6.0)					
MC-3500 End Cap	3,699 (2.2)	3,900 (2.3)	4,100 (2.5)	4,301 (2.6)					

Note: Assumes 12" (300 mm) of stone above and 9" (230 mm) row spacing and 6" (150 mm) of perimeter stone in front of end caps.

VOLUME EXCAVATION PER CHAMBER YD³ (M³)

		Stone For	undation Depth	
	9" (230 mm)	12" (300 mm)	15" (375mm)	18" (450 mm)
MC-3500 Chamber	12.4 (9.5)	12.8 (9.8)	13.3 (10.2)	13.8 (10.5)
MC-3500 End Cap	4.1 (3.1)	4.2 (3.2)	4.4. (3.3)	4.5 (3.5)

Note: Assumes 9" (230 mm) of separation between chamber rows and 24" (600 mm) of cover. The volume of excavation will vary as depth of cover increases.

Working on a project? Visit us at www.stormtech.com and utilize the StormTech Design Tool

For more information on the StormTech MC-3500 Chamber and other ADS products, please contact our Customer Service Representatives at 1-800-821-6710

method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing

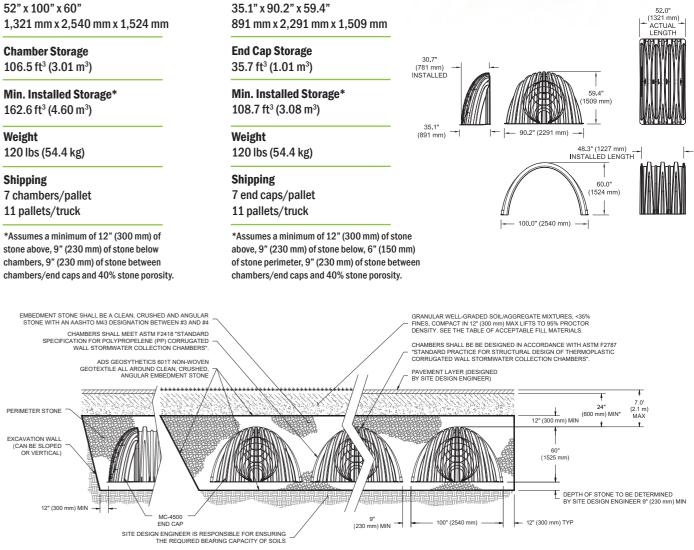
MC-4500 CHAMBER

land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

STORMTECH MC-4500 CHAMBER (not to scale)

Nominal Chamber Specifications

Size (LxWxH) 52" x 100" x 60"


Min. Installed Storage* 162.6 ft³ (4.60 m³)

7 chambers/pallet 11 pallets/truck

stone above, 9" (230 mm) of stone below chambers, 9" (230 mm) of stone between chambers/end caps and 40% stone porosity.

STORMTECH MC-4500 END CAP (not to scale)

Size (L x W x H)

THE MOST ADVANCED NAME IN WATER MANAGEMENT SOLUTIONS™

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc StormTech® is a registered trademark of StormTech, Inc. © 2017 Advanced Drainage Systems, Inc. #S150909 09/17 CS

Advanced Drainage Systems, Inc. 4640 Trueman Blvd., Hilliard, OH 43026 1-800-821-6710 www.ads-pipe.com

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective

Nominal End Cap Specifications

MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 30 (750 mm).

MC-4500 CHAMBER SPECIFICATIONS

STORAGE VOLUME PER CHAMBER FT³ (M³)

	Bare Chamber		Chamber and Stone Foundation Depth in. (mm)					
	Storage ft ³ (m ³)	9" (230 mm)	12" (300 mm)	15" (375 mm)	18" (450 mm)			
MC-4500 Chamber	106.5 (3.02)	162.6 (4.60)	166.3 (4.71)	169.6 (4.81)	173.6 (4.91)			
MC-4500 End Cap	35.7 (1.0)	108.7 (3.08)	111.9 (3.17)	115.2 (3.26)	118.4 (3.35)			

Note: Assumes 9" (230 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume. End cap volume assumes 12" (300 mm) stone perimeter.

AMOUNT OF STONE PER CHAMBER

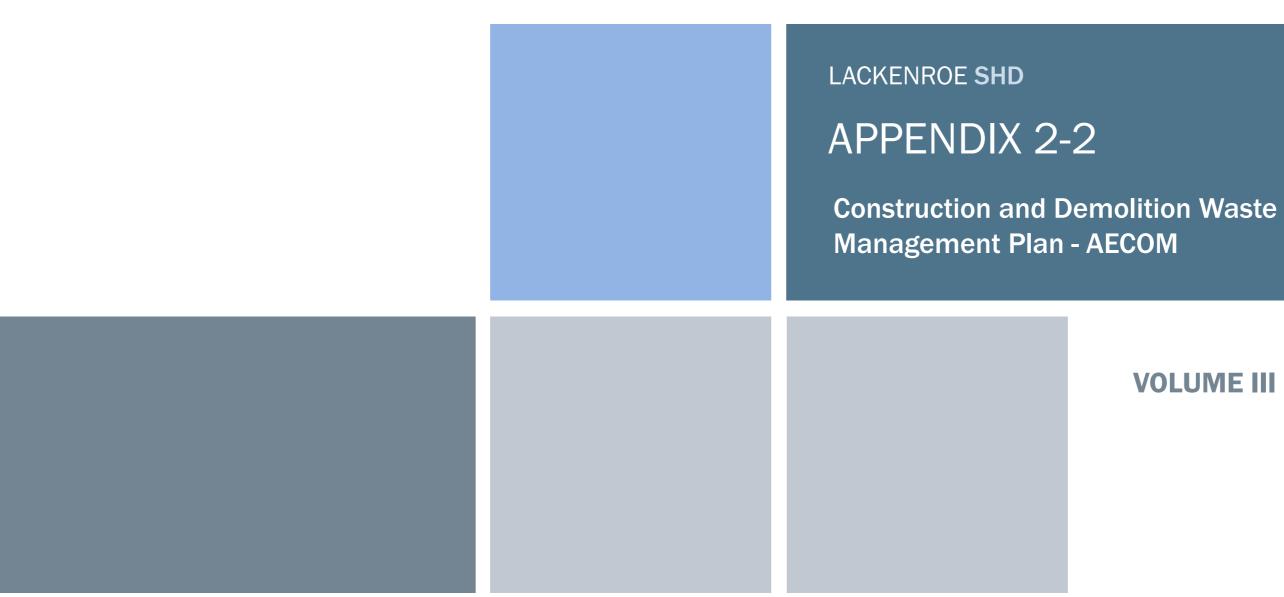
		Stone Foun	dation Depth	
ENGLISH TONS (yds ³)	9"	12"	15"	18"
MC-4500 Chamber	7.4 (5.2)	7.8 (5.5)	8.3 (5.9)	8.8 (6.2)
MC-4500 End Cap	9.6 (6.8)	10.0 (7.1)	10.4 (7.4)	10.9 (7.7)
METRIC KILOGRAMS (m ³)	230 mm	300 mm	375 mm	450 mm
MC-4500 Chamber	6,681 (4.0)	7,117 (4.2)	7,552 (4.5)	7,987 (4.7)
MC-4500 End Cap	8,691 (5.2)	9,075 (5.4)	9,460 (5.6)	9,845 (5.9)

Note: Assumes 12" (300 mm) of stone above and 9" (230 mm) row spacing and 12" (300 mm) of perimeter stone in front of end caps.

VOLUME EXCAVATION PER CHAMBER YD³ (M³)

	Stone Foundation Depth			
	9" (230 mm)	12" (300 mm)	15" (375mm)	18" (450 mm)
MC-4500 Chamber	10.5 (8.0)	10.8 (8.3)	11.2 (8.5)	11.5 (8.8)
MC-4500 End Cap	9.3 (7.1)	9.6 (7.3)	9.9 (7.6)	10.2 (7.8)

Note: Assumes 9" (230 mm) of separation between chamber rows, 12" (300 mm) of perimeter in front of the end caps, and 24" (600 mm) of cover. The volume of excavation will varyas depth of cover increases.



Working on a project? Visit us at www.stormtech.com and utilize the StormTech Design Tool

For more information on the StormTech MC-4500 Chamber and other ADS products, please contact our Customer Service Representatives at 1-800-821-6710

THE MOST ADVANCED NAME IN WATER MANAGEMENT SOLUTIONS™

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech® is a registered trademark of StormTech, Inc. © 2017 Advanced Drainage Systems, Inc. #S26B1110 09/17 CS Advanced Drainage Systems, Inc. 4640 Trueman Blvd., Hilliard, OH 43026 1-800-821-6710 www.ads-pipe.com aecom.com

VOLUME III | Appendices

AECOM

Construction and Demolition Waste Management Plan

Quality information

Pr	epared by
	APrenchirga

Checked by Guma Millenovich

Aileen Prendergast	Emma McKendrick	E
Principal Engineer	Regional Director	F

Revision History

Revision	Revision date	Details	Authorized	Name	Position
0	3 rd December 2021	Issued for Planning	AP	Aileen Prendergast	Principal Engineer

Distribution List

# Hard Copies	PDF Required	Association / Compa
10	Yes	HW Planning/ AWN C Westhill/ Deady Gaha

Outline Construction and Demolition Waste Management Plan

Proposed Residential Development at Glounthaune, Co. Cork.

Bluescape Limited

Project number: 60592432 60592432-ACM-00-XX-RP-CE-00-0004

Verified by

Approved by

Emma Millendrich

APrenchigant

Emma McKendrick Regional Director Aileen Prendergast Principal Engineer

bany Name

Consulting/ CSR/ Kelleher Ecology Services/ MHL/ an Architects/

Prepared for:

Bluescape Limited

Prepared by:

AECOM Ireland Limited 1st floor, Montrose House Carrigaline Road Douglas, Cork T12 P088 Ireland

T: +353 21 436 5006 F: +353 21 436 5156 aecom.com

© AECOM Ireland Limited. All Rights Reserved.

This document has been prepared by AECOM Ireland Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Bluescape Limited Project number: 60592432

Table of Contents

1.	Introduction	6
	1.1 Background	6
	1.2 Legislative Basis	7
	1.3 Objectives	7
2.	Project Description	9
	2.1 Site Location	9
	2.2 Proposed Development	9
	2.3 Engineering Challenges	10
	2.4 Proposed Phasing	11
	2.5 Sequence of Works	12
	2.5.1 Proposed Demolition Works	12
	2.6 Construction Phase Content	13
3.	Roles & Responsibilities	14
	3.1 Pre-Construction Phase	14
	3.2 Construction Phase	14
4.	General Waste Management Regulatory and Policy Requirements	16
	4.1 Guidance Reference Documents	
5.	Waste Hierarchy	18
	5.1 Waste Minimisation	19
6.	Waste Identification, Classification, Quantification and Handling	20
	6.1 Waste Identification, Classification and Quantification	20
	6.2 Waste Handling	21
	6.2.1 Segregation and Storage	22
	6.2.2 Waste Permitting, Licences & Documentation	22
	6.2.3 Predicted Waste Streams	22
	6.2.4 Control Measures	23
	6.2.5 Monitoring and Measurement	24
	6.3 Construction Phase Updates	24
7.	Excavated Material Management	25
	7.1 Excavated Soil & Materials	
	7.1.1 Soil and Crushed Rock for Reuse on Site	25
	7.1.2 Excavated Material for Removal Off-site	26
	7.1.3 Stockpile Management	26
8.	Hazardous Materials Waste Management	27
9.	Waste Management Documentation	27
10.	Financial Issues of Waste	28
	10.1 Reuse/ Recovery	28
	10.2 Recycling	28
	10.3 Disposal	28
11.	Waste Audits	29
12.	Waste Management Plan Awareness & Training	29

1. Introduction

1.1 Background

AECOM were appointed by Bluescape Limited to prepare an outline Construction Demolition Waste Management Plan (CDWMP) / Resource and Waste Management Plan (RWMP), herein known as 'the plan', in support of a Strategic Housing Development (SHD) planning application to An Bord Pleanála for a proposed residential development at Glounthaune, Co. Cork.

This plan has been prepared to accompany the planning application for the proposed development. The proposed layout of the development is detailed in the planning drawings prepared by Deady Gahan Architects.

The purpose of this plan is to detail how the Contractor is required to manage waste during the construction phase of the proposed development. The objective of this plan is to ensure that the development's resources and construction & demolition (C&D) waste is managed in accordance with applicable legislation, local authority plans and policies and regional waste management targets. C&D wastes are defined as waste which arises from construction, renovation and demolition activities. As per the EPA 'Best Practice Guidelines for the Preparation of Resource Management Plans for Construction & Demolition Projects', April 2021, this plan will be built upon by the design team and contractor following approval of the submission. A Construction and Environmental Management Plan (CEMP) has also been prepared to accompany this application.

The project lifecycle of the plan during the project is illustrated in Figure 1, taken from Section 3.1 of the EPA 'Best Practice Guidelines for the Preparation of Resource Management Plans for Construction & Demolition Projects'.

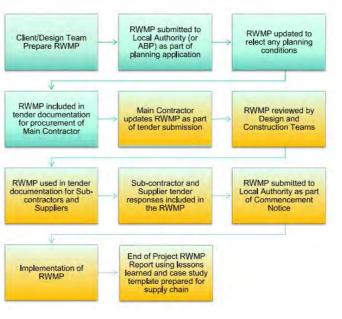


Figure 1 – Project Life Cycle of the CDWMP/ RWMP

Figures

Figure 1 – Project Life Cycle of the CDWMP/ RWMP	6
Figure 2 – Text Box 1	
Figure 3 – Site Location and Layout	
Figure 4 – Proposed Phasing Plan	
Figure 5 – Location of existing dwellings to be demolished	
Figure 6 - EU Waste Hierarchy	

Tables

Table 1.	Excavation Volumes	12
Table 2.	Pre-Construction Phase Waste Management – Key Responsibilities	14
Table 3.	Construction Stage Waste Management – Key Responsibilities	14
Table 4.	Potential Non Hazardous and Hazardous Waste Classification	20
Table 5.	Waste Minimisation	21

Legislative Basis 1.2

Construction and demolition (C&D) waste is defined as waste which arises from construction. renovation and demolition activities, together with all waste categories mentioned in Chapter 17 of the List of Waste (LoW)¹. Also included within the definition are surplus and damaged products and materials arising during construction work or used temporarily during the course of onsite activities.

This plan has been prepared in accordance with EPA's guidance document Best Practice Guidelines for the Preparation of Resource Management Plans for Construction & Demolition Projects. The proposed residential development is classed as a Tier 2 development as set out in Section 3.1 of this guidance document.

Section 3.1 defines Tier 1 projects as 'Smaller scale projects, below the thresholds presented in Text Box 1', and Tier 2 Developments as 'Larger scale projects, above the thresholds presented in Text Box 1'. Figure 2 illustrates the thresholds presented in Text Box 1, taken from Best Practice Guidelines for the Preparation of Resource Management Plans for Construction & Demolition Projects.

Text Box 1: RWMP Thresholds

Developments below the following thresholds may be classed as Tier 1 development:

- New residential development of less than 10 dwellings;
- Retrofit of 20 dwellings or less;
- New commercial, industrial, infrastructural, institutional, educational, health and other developments with an aggregate floor area less than 1,250m2;
- Retrofit of commercial, industrial, infrastructural, institutional, educational, health and other developments with an aggregate floor area less than 2,000m²; and
- Demolition projects generating less than 100m³ in volume of C&D waste.

Developments above these thresholds are classed as Tier-2 projects.

Figure 2 – Text Box 1

This CDWMP has therefore been prepared with reference to and taking account of the following legislation, plans and waste management guidance documents:

- The Waste Management Act 1996 2008, Amendments & Associated Regulations; ٠
- CIRIA document 133 Waste Minimisation in Construction;
- The Litter Pollution Act 1997, as amended;
- The Southern Region Waste Management Plan 2015-2021; .
- Construction Code of Practice for the Sustainable Use of Soils on Construction Sites (DEFRA), September 2009;
- Designing out Waste: A Design Team Guide for Civil Engineering (WRAP); and ٠
- Best Practice Guidelines for the Preparation of Resource Management Plans for Construction & Demolition Projects, Draft for Public Consultation, April 2021.

Objectives 1.3

The objectives of the CDWMP are as follows:

Promote an integrated approach to waste management throughout the project construction stage and to set out appropriate responsibilities;

- Promote sustainable waste management in line with the waste management hierarchy; ٠
- Provide an outline plan for the management of wastes arising from construction works for the project in accordance with the relevant Irish and EU waste management legislation; and
- Provide a framework for the designers and the Principal Contractor to appropriately • manage waste generated during the course of the project.

This plan outlines methods to achieve waste prevention, maximum recycling and recovery of waste and provides recommendations for the management of the various anticipated waste streams. This plan also provides guidance on collection and transport of waste to prevent issues associated with litter or more serious environmental pollution (e.g. contamination of soil or water resources).

¹ Environmental Protection Agency, Waste Classification, List of Waste & Determining if Waste is Hazardous or Non-Hazardous, Valid from 5th July 2018

Project Description 2.

2.1 Site Location

The current site comprises primarily of a greenfield site. The site measures approximately 13.87 ha in total. The public road network surrounding the site is defined by Killahora Road (L-2969) to the north, Knockraha Road (L-2968) to the west, and The Terrace (L-2970) / Johnstown Close to the south.

The majority of the site is located to the north of the Terrace (L-2970). This site is primarily greenfield, currently used as agricultural lands with woodland areas at the southern end. These lands have not been developed previously. There is one derelict unit (total area of 148.2 sqm) located at the southern end, accessed from the Terrace (L-2970). The part of the site to the north of the Terrace is bounded by existing residential developments to the north, west and south.

The remainder of the site is located to the south of the Terrace (L-2970). This site is primarily greenfield with wooded areas throughout. These lands have not been developed previously. This part of the site is bounded by the L-2970 to the north, existing dwellings to the east and west, and Johnstown Close to the south.

There is a considerable variation in ground levels across the site which has been considered in developing the proposed layout. The site slopes from north to south from approximate +110 m OD Malin to +34.5 m OD Malin on The Terrace to approximately +3.30 m OD Malin.

2.2 **Proposed Development**

The proposed development consists of the construction of a mixed-use residential development of 289 no. residential units consisting of 201 no. dwelling houses and 88 no. apartment/duplex units, a two storey creche, 4 no. ESB substations and all ancillary site development works at Lackenroe and Johnstown (townlands), Glounthaune, Co. Cork. The proposed development will be constructed on lands to the north and south of the public road, L-2970, known locally as 'the Terrace'. A portion of the site to the south of 'the Terrace' was formerly within Ashbourne Garden and is considered to be within the curtilage and attendant grounds of Ashbourne House, which is a Protected Structure (Ref 00498).

The proposed development to the north of 'the Terrace' provides for 260 no. residential units comprising of 196 no. dwelling houses, 64 no. apartment/duplex units and a two storey creche. The 196 no. dwelling houses includes 5 no. 4 bedroom detached dwellings, 44 no. 4 bedroom semi-detached dwellings, 12 no. 4 bedroom townhouses, 2 no. 3 bedroom detached dwellings, 22 no. 3 bedroom semi-detached dwellings, 47 no. 3 bedroom townhouses and 64 no. 2 bedroom townhouses. The 64 no. apartment/duplex units contains 5 no. 3 bedroom units, 32 no. 2 bedroom units and 27 no. 1 bedroom units contained in 6 no. three storey apartment buildings, with ancillary bicycle parking and bins stores.

The proposed development to the south of 'the Terrace' provides for 29 no. residential units comprising of 5 no. dwelling houses and 24 no. apartments. The 5 no. dwellings include 1 no. 3 bedroom detached dwelling, 2 no. 3 bedroom townhouses and 2 no. 2 bedroom townhouses. The proposed apartments are provided in a four-storey mixed-use building containing a ground floor community unit and a commercial unit with apartments at ground and upper floor levels comprising 3 no. 3 bedroom units, 7 no. 2 bedroom units and 14 no. 1 bedroom units with ancillary rooftop terrace, car parking, bicycle parking and bin stores.

Vehicular access to 2 no. dwellings in the lands to the north of 'the Terrace' will be provided via an upgraded entrance from 'the Terrace' with vehicular access to the remainder of dwellings in the lands to the north of 'the Terrace' via the signalised junction from the L-2968 and internal road network permitted by Cork County Council reference 17/5699 and An Bord Pleanála reference 300128-17. A separate secondary emergency access is also proposed from the L-2969 to the north.

Construction and Demolition Waste Management Plan

Vehicular access to the 5 no. dwellings to the south of the 'the Terrace' will be via a new entrance from 'the Terrace' and the proposed apartment building will be accessed from Johnstown Close. The proposed development also makes provision for a pedestrian link from the proposed development north of 'the Terrace' to Johnstown Close via 'the Terrace' which will include a signalised pedestrian crossing and associated traffic calming measures on 'the Terrace'.

Ancillary site works include the demolition of 1 no. existing derelict dwelling house and associated outbuildings, landscaping and servicing proposals including the realignment of the existing pedestrian/cycle route on Johnstown Close, the undergrounding of existing overhead lines, upgrade of the storm and foul sewer network to the south and east of the subject lands along 'the Terrace' and Johnstown Close (L-3004).

Figure 3 illustrates the extent and layout of the proposed development.

Figure 3 – Site Location and Layout

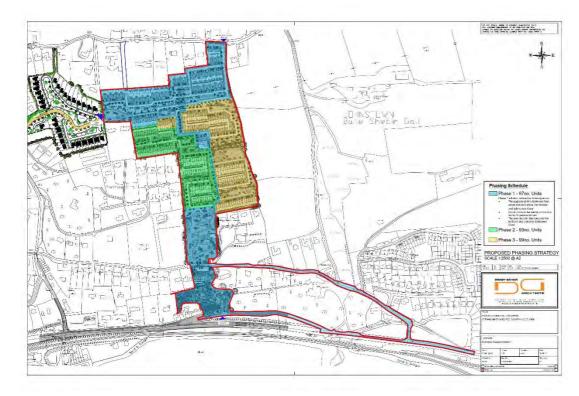
2.3 Engineering Challenges

The site presents a number of engineering challenges. These include topography, geology, physical form and lack of pedestrian connectivity between the upper and lower lands.

The site layout has been developed by the design team to work with the natural form, geology and constraints of the site while at the same time complying with technical design standards:

- serving the development.
- A separate secondary emergency access is proposed to the L-2969 to the north.

The natural topography of the site was considered. Vehicular access to the lands to the north of 'the Terrace' will be via the signalised junction from the L-2968 and internal road network permitted by Cork County Council reference 17/5699 and An Bord Pleanála reference 300128-17. The new is road is an extension of the road serving the phase 1 development. The road traverses west to east across with internal roads


- A 3m wide shared pedestrian / cycle path has been incorporated to provide access ٠ from Johnstown Close to Terrace Road and also from Terrace Road to the dwellings to the north, connecting at access Road 11. Given the topography of the site the minimum gradient achievable is 1 in 12. The maximum length between landings is 10m and a continuous handrail is proposed on down slope of the path. This ensures an accessible, integrated and permeable design.
- To shorten the distance between the points of pedestrian connectivity between Johnstown Close and the Terrace Road for non-disabled persons, 2m wide concrete steps have been incorporated into the slope. A more direct route from the Terrace Road to the dwellings to the north, connecting at access Road 11 within the development for use by non-disabled persons is also provided. Signage will be provided at the both ends of the path and where it intersects with the accessible path warning the route incorporates stairs. A cycle ramp is proposed on the stairs to allow cyclists to push their bicycle up/down the stairs.

Additional detail on the constraints considered as part of the design development of the proposals is provided in the Constraints Reports prepared to accompany this application.

2.4 **Proposed Phasing**

It is proposed to deliver the proposed development in 3 phases:

- Phase 1: 97 Units including the creche, community facility and commercial unit (shown in blue in Figure 4) This phase also includes the construction of the development access road through the site along with the pedestrian paths traversing from north to south through the site,
- Phase 2: 93 Units along the western boundary of the site (noted in green in Figure 4), .
- Phase 3: 99 Units along the eastern boundary of the site (noted in yellow in Figure 4). .

Figure 4 – Proposed Phasing Plan

Sequence of Works 2.5

It is estimated that the overall duration of the Construction Phase will be approximately 48 months. The main stages of construction will be progressed based on the following:

- Complete any necessary pre-construction surveys. Please refer to the EIAR ٠ accompanying this application for specified surveys.
- Implement all mitigation measures outlined in the application document, ٠
- Confirm utility locations and divert utilities,
- Establish contractor's site compound and erection of site hoarding,
- Site clearance and top soil stripping, •
- Cut and fill to level and re-grading works within site to formation level,
- Installation of services (drainage networks, water supply, electricity, etc.),
- Construction of roads, footpaths & hard/ soft landscaping, •
- Installation of foundations/ footings for buildings and retaining walls,
- Construction of new buildings (houses, duplex units and creche), ٠
- Connection to public services,
- Installation of substations,
- Provision of proposed road finishes
- Provision of landscaping finishes,
- Complete all site finishes,
- Completion of any required testing and commission services within the development. •

The above will be undertaken for each of the phases set out in Section 2.4. Table 1 presents the estimated cut and fill volumes associated with the proposed development.

Table 1. Excavation Volumes

Material	Cut Volume (m ³)	Fill Volume
Top Soil (400 mm depth)	41,772	13,925
Overburden	53,964	53,964
Rock	18,565	12,602 (crus as fill)

Proposed Demolition Works 2.5.1

There is an existing derelict dwelling to the north of the Terrace that are to be demolished and replaced with two new residential units. Figure 5 illustrates the location of the existing derelict dwelling to be demolished. The total area of the derelict buildings is approximately 148 m².

e (m ³)	Net Volume (m ³)		
	27,798		
	0		
ished rock	5.963		

Construction and Demolition Waste Management Plan

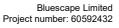


Figure 5 – Location of existing dwellings to be demolished

2.6 **Construction Phase Content**

As per Appendix C of the EPA 'Best Practice Guidelines for the Preparation of Resource Management Plans for Construction & Demolition Projects', this plan is to be updated to reflect the following at Construction Phase:

- A summary of any significant design changes imposed since the Design Stage RWMP • through mechanisms such as value engineering or other;
- Details of planning permission (if relevant) and in particular any conditions imposed in • relation to resource management;
- Any issues related to ground contamination which were identified during the construction ٠ phase.

Construction and Demolition Waste Management Plan

Roles & Responsibilities 3.

All parties involved in the Project will have responsibility for waste management. Responsibility will vary at different stages of the project lifecycle, as set out below.

3.1 **Pre-Construction Phase**

Table 2 sets out the roles and responsibilities during the pre-construction phase of the proposed development.

Table 2. Pre-Construction Phase Waste Management – Key Responsibilities

Responsible Party		Responsibility	Project Stage	
Client	Bluescape Limited	Appointment of competent Design Team, Resource Manager and Principal Contractor	Project initiation and subsequent tendering phases	
		Responsibility of waste management from 'cradle to grave', including documentation of same.	All project stages	
Design Team	Architect: Deady Gahan Architects Ltd	Design of Soil Excavation Plan Identification of Key Waste Streams	Pre-Construction	
	Engineer: AECOM	Design to minimize waste generation in lifecycle of -completed construction.		
	Landscape Architect: CSR Land Planning & Design	Adequately provide for waste management in tender documents and declare all relevant information & data.		

3.2 **Construction Phase**

Following appointment of a Contractor to undertake the works, the following information must be included in this section of the plan. Table 3 provides a description of the future role of the Contractor.

- Overview of the Construction Phase roles included Client, Client's Representative, • Contractor, Sub-Contractors, etc.;
- Description of the role of the named Client and key personnel; •
- Description of the role of the Contractor's Project Manager;
- Description of the role of the Contractor's Site Manager; •
- Description of the role of the Contractor's nominated Resource Manager (RM);
- Description of the role of the Quantity Surveyor on procurement and purchasing; •
- Description of the role of the named Sub-Consultants and Suppliers. ٠

The appointed Contractor will be responsible for updating the plan.

Table 3. Construction Stage Waste Management – Key Responsibilities

Responsibility

Principal Construction & Demolition Waste Management Contractor implementation

> Refinement and implementation of the outline C within their own over-arching Site Waste Manag Plan (SWMP)

Appoint competent and authorized waste management contractor(s)

Appoint trained, competent Waste Manager

	Project Stage
t Plan	Project Implementation
CDWMP gement	Project Implementation
	Project tendering phase
	Construction phase

construction waste disposal

Bluescape Limited Project number: 60592432

Construction and Demolition Waste				
Management Plan				

4. General Waste Management Regulatory and Policy Requirements

Some specific points on waste management policy and regulatory requirements are set out as follows:

- 17 of the LoW, including hazardous and non-hazardous waste types.
- other material.
- in May 2015. Notable and relevant points are:
 - in a variety of engineering applications;
 - in the design phase of a project;
 - (excluding soil and stones) by year 2020; and
 - that otherwise are seen as waste or useless products.

The Regional Waste Management Planning Offices (RWMPOs) have undertaken a study to guantify and analyse national capacity within the market for the management of soil and stone waste arisings, including hazardous, based on 2018 data. This report updates the Soil and Stone Recovery / Disposal Capacity report published in 2016. The report also documents data with respect to waste concrete and other CDW (construction and demolition waste).

The report delivers a 10-year forecasting exercise predicting the volumes of soil and stone, concrete, and other CDW generation.

The available capacity of the seven facilities in the SR is located in the eastern part of the region, in counties Wexford and Kilkenny, with one facility in each county. There are currently three licenced facilities in County Cork, one is inactive and two are licenced facilities that are yet to commence operation. When operational these facilities will have a combined annual capacity of 580,000 tonnes.

This study found that Cork is (or will be) well served by licenced capacity - "The available intake data indicates that current volumes would support the development of long-term licensed capacity in these areas to support planned infrastructure and housing developments".

Responsibility		Project Stage	
Waste Manager	SWMP implementation	Project implementation	
	Ensure that's the objectives of both the CDWMP and the contractors SWMP are achieved.	Construction stage	
	Waste characterisation. Selection of techniques and design to minimize waste and to maximize recovery and recycling of waste during the project.	Project Design Phase and during project implementation	
	Maintenance of Waste Documentation for 3 years.	Post-construction stage	
	Completion of Final Waste Management Report	Construction stage	
	Educate colleagues, site staff, external contractors and suppliers about alternatives to conventional	, , , , , , , , , , , , , , , , , , , ,	

Construction and Demolition (C&D) waste can be defined as all waste that arises from construction, renovation and demolition activities and includes all waste listed in Chapter

The EU Waste Framework Directive (2008/98/EC), enacted in Ireland under the Waste Directive Regulations, 2011 of the same title, requires Member States to take the necessary measures to achieve the minimum recycling/recovery target of 70% by weight for non-hazardous C&D waste, excluding naturally occurring materials, by 2020. The Directive specifies that such a target should be achieved by preparing for reuse, recycling and other material recovery, including backfilling operations using waste to substitute

The Southern Region Waste Management Plan 2015 – 2021 (SR-WMP) was published

a. There has been a sharp drop in the number of available operational landfills nationally. Historically these were a significant outlet for C&D waste. Therefore, there is a need to maximize diversion of infill of C&D waste and consider alternative uses, for example, crushing and screening of masonry, stone and concrete wastes for re-use

b. The need to progress towards a 'circular economy' whereby raw materials, traditionally almost entirely becoming waste in a linear life cycle, instead become a much smaller input into a circular approach to materials use from design through to production, through to consumption but then maximizing re-use and recycling to close the circle back to design. For example, C&D wastes can become raw materials

c. The SR-WMP plan sets out a target of 70% of C&D waste re-use and recycling

d. The SR-WMP brings in the concept of 'upcycling' which is the re-purposing of items

The primary legislative instruments that govern waste management in Ireland and are applicable to the project are:

- Waste Management Act 1996 (S.I. No. 10 of 1996) as amended by the Waste • Management (Amendment) Act 2001. Sub-ordinate legislation to this Act include:
 - European Communities (Waste Directive) Regulations 2011 (SI 126 of 2011) as amended 2011 (S.I. No. 323 of 2011);
 - Waste Management (Collection Permit) Regulations S.I No. 820 of 2007 as amended 2008 (S.I No 87 of 2008);
 - Waste Management (Facility Permit and Registration) Regulations, S.I No. 821 of 2007 as amended 2008 (S.I No. 86 of 2008);
 - Waste Management (Licensing) Regulations 2000 (S.I No. 185 of 2000) as amended 2004 (S.I. No. 395 of 2004), 2010 and (S.I. No. 350 of 2010);
 - Waste Management (Packaging) Regulations 2003 (S.I. No. 61 of 2003) as _ amended 2004 (S.I. No. 871 of 2004), 2006 (S.I. No. 308 of 2006) and 2007 (S.I. No. 798 of 2007);
 - Waste Management (Planning) Regulations 1997 (S.I. No. 137 of 1997); _
 - Waste Management (Landfill Levy) (Amendment) Regulations 2012 (S.I. No. 221 of 2012), as amended 2015 (S.I. No. 189 of 2015);
 - European Communities (Waste Electrical and Electronic Equipment) Regulations _ 2011;
 - Waste Management (Registration of Brokers and Dealers) Regulations 2008 (S.I. _ 113 of 2008); and
 - Waste Management (Food Waste) Regulations 2009 (S.I. No. 508 of 2009), as _ amended 2015 (S.I. 190 of 2015).
- Protection of the Environment Act 2003 (S.I. No. 413 of 2003). •
- Litter Pollution Act 1997 (S.I. No. 12 of 1997). •

These Acts and subordinate Regulations enable the transposition of relevant European Union Policy and Directives into Irish law.

Guidance Reference Documents 4.1

- HSE ENV EP006 Company Waste Management Procedure
- HSE EB 04 Waste Management on site
- HSE ENV GN01 Site Waste Management Plan Guidance

Construction and Demolition Waste Management Plan

Waste Hierarchy 5.

Besides the requirements that the off-site handling of waste generated by this project are subject to the required statutory authorisations under the Waste Management Act, there is also a necessity that it conforms to the Waste Hierarchy². This hierarchy outlines that waste prevention and minimisation are the first priority in managing wastes, followed by waste reuse and recycling with disposal being considered as a last resort.

The EU Waste Directive (2008/98/EC) also mandates that hazardous waste generation should be avoided or at least minimised.

Figure 6 - EU Waste Hierarchy

Definitions defined in the Waste Framework Directive of key terms indicated in Figure 2 are (in order of priority):

- substances in materials and products.
- are used again for the same purpose for which they were conceived.
- ٠ reprocessing into materials that are to be used as fuels or for backfilling operations.
- the wider economy.

The Waste Hierarchy only applies to material that is defined as "waste", so does not apply to the proportion of the spoil that is handled on-site in conformity with the statutory exclusions.

The Waste Management Hierarchy will be activated for any material which does not satisfy the exclusions; in this regard the contract documents for the detailed design/construction project will clearly set out the staged approach which the contractor will be required to adhere to through the use of the Waste Hierarchy.

Prevention includes measures taken before a substance, material or product has become waste, that reduce (a) the quantity of waste, including through the reuse of products or the extension of the lifespan of products, (b) the adverse impacts of the generated waste on the environment and human health or (c) the content of harmful

Re-Use is defined as any operation by which products or components that are not waste

Recycling is any recovery operation by which waste materials are processed into products, materials or substances whether for the original or other purposes. It includes the reprocessing of organic material but does not include energy recovery and the

Recovery is defined as any operation, the principal result of which is waste serving a useful purpose by replacing other materials which would otherwise have been used to fulfil a particular function, or waste being prepared to fulfil that function, in the plant or in

² Waste Hierarchy as set out in Article 4 of the Waste Framework Directive (2008/98/EC) and transposed into Irish law via Section 21A of the Waste Management Act

5.1 Waste Minimisation

The following waste minimisation measures will be implemented during the course of the construction works:

- Facilitate recycling and appropriate disposal by on site segregation of all waste materials generated during construction into appropriate categories, including:
 - Topsoil, subsoil, gravel hard-core,
 - Concrete, bricks, tile, ceramics, plasterboard,
 - Asphalt, tar and tar products,
 - Metals,
 - Dry Recyclables e.g. cardboard, plastic, timber.
- All waste assessed by the Waste Manager as 'not suitable for reuse' will be stored in skips or other suitable receptacles in a designated area of the site, to prevent cross contamination between waste streams, dispersion and leaching;
- Wherever possible, leftover materials (e.g. timber off cuts) and any suitable demolition materials will be reused on-site;
- Uncontaminated excavated material (top-soil, sub soil, etc.) will be segregated, stockpiled and re-used on site in preference to importation of clean fill, where possible; and
- Where possible, the Waste Manager will ensure that all waste leaving site will be recycled or recovered.

6. Waste Identification, Classification, Quantification and Handling

6.1 Waste Identification, Classification and Quantification

The majority of waste generated will be soil and rock excavated during the course of the construction works. Should appropriate reuse be required, and practical, clean soil will be retained on site and reused in areas of soft landscaping, backfilling, etc. Crushed rock could be used in Crib or Gabion retaining walls. A record of the volumes and reuse requirements will be maintained by the Principal Contractor as part of their plan, as per Appendix C of the EPA 'Best Practice Guidelines for the Preparation of Resource Management Plans for Construction & Demolition Projects'.

During the construction phase, there will be some building material and packaging waste generated. This will mainly include excess ready-mix concrete and mortar, timber off cuts, plastics, metal off cuts, cladding and tile offcuts, asphalt, tar, tar products as well as plastic and cardboard waste from packaging and potential over-supply of materials.

All individual waste arisings shall be identified, recorded, classified and quantified (volume, weight) as early in the project lifecycle as possible but, inevitably, unanticipated waste arisings may occur as site work progresses, necessitating the need for a procedure to provide for waste classification as the site work proceeds.

It is anticipated that the majority of non-hazardous and inert waste generated will be suitable for reuse, recovery or recycling and will be segregated to facilitate the reuse, recovery and/or recycling, where possible.

A non-exhaustive list of anticipated wastes from the construction phase and preliminary classification as either hazardous or non-hazardous is presented in Table 2.

Table 4. Potential Non Hazardous and Hazardous Waste Classification

Hazardous Waste	Ν
Excess Electrical & Electronic Components	A
Liquid Fuels	M (s
Batteries	W Ca
Concrete (contaminated with dangerous substances)	C (r sı
Excavated Soil (contaminated with dangerous substances)	E da
Asphalt, tar and tar products	М
Other construction and demolition wastes containing dangerous substances	

Wastes arising for the project will be segregated, identified and classified by the Principal Contractor in accordance with the EPA 'Best Practice Guidelines for the Preparation of Resource Management Plans for Construction & Demolition Projects', EPA, 2021.

Wastes shall not be removed from the site until properly classified, assigned a correct LoW code and all appropriate tracking and disposal documentation is in place.

Non-Hazardous Waste

Asphalt

/letals

stainless steel, mild steel, copper, aluminium)

Vood (Clean), glass, plastic, paper and ardboard

Concrete not contaminated with dangerous substances)

Excavated soil/fill (not contaminated with langerous substances)

Aunicipal waste

For each waste stream identified and classified, and for each waste stream that may arise during the course of the works, the following shall be identified and documented by the Principal Contractor in their SWMP:

- An appropriate waste classification and correct LoW code; Where a waste type is • considered a mirror entry, the classification of materials as non-hazardous and/or hazardous waste will be determined based on the www.hazwasteonline.com web-based waste assessment system (as recognized by the Environmental Protection Agency) and using Waste Acceptance Criteria in accordance with the European Communities (EC) Council Decision 2003/33/EC, which establishes criteria for the acceptance of waste at landfills;
- A suitable Waste Collection Contractor in possession of a valid Waste Collection Permit • for the collection of waste within the Cork County Council area;
- Appropriate waste recovery, recycling or disposal facilities, including any required transfer ٠ stations whereupon the said facilities shall be in possession of a valid Waste Facility Certificate of Registration, permit or Waste License, as appropriate;
- A recovery, recycling or disposal plan for the waste, where applicable. Where any material ٠ is being recovered onsite or offsite for reuse; the Principal Contractor will provide confirmation of any application to the EPA under Article 27³ or Article 28⁴ to classify material as a by-product or as end of life waste respectively; and
- Final reconciled waste quantities generated, including details of waste disposal, reuse . and recovery quantities.

6.2 Waste Handling

The site manager will maintain a record of all waste removed from the site. The record shall include information on the type of waste removed, the quantity removed, the date removed, details of whether the waste in question was being removed for either disposal or recovery/ recycling, details of the transporter of waste, details of the facility to which waste is removed (including license or permit number). A location shall be identified where all records in regard to waste transport, recycling, disposal will be held for inspection.

Table 5. Waste Minimisation

Туре	Waste Minimisation Decision Taken	By Whom	Intended Results
Demolition Methods	Segregate waste into separate skips for recycling	Contractor	Increased recycling of materials, reduce material to landfill
Materials	Provide segregated skips for material recycling: timber, metals, plastic, etc.	Contractor	Increased recycling of materials, reduce material to landfill
Materials	Request unpackaged materials from suppliers where applicable, e.g. palletised, skips, etc.	Contractor	Reduced packaging waste
Hazardous Materials	Any hazardous materials to be segregated in hazardous waste bin	Contractor	Hazardous waste items removed from site are to be disposed of by licenced contractor/ company.

³ Notification of by-product decisions by economic operators under Article 27 of the European Communities (Waste Directive) Regulations 2011, S.I. No. 126 of 2011

⁴ End-of-Waste Status under article 28 of the European Communities (Waste Directive) Regulations, 2011, S.I. No. 126 of 2011.

Segregation and Storage 6.2.1

Wastes generated during works will be segregated and temporarily stored on site (pending collection or for re-use on site) in accordance with the Contractor's pre-determined segregation and storage strategy.

The following minimum segregation and storage strategy requirements will be required:

- Waste streams will be individually segregated; and all segregation, storage & stockpiling • locations will be clearly delineated on site drawings;
- Waste storage, fuel storage and stockpiling and movement are to be undertaken with a view to protecting any essential services (electricity, gas, water) and with a view to protecting existing localised groundwater quality boreholes (if applicable);
- Roles and responsibilities of those managing the segregation and storage areas are to be • identified:
- The waste storage area will contain suitably sized containers for each waste stream and • will be agreed with the waste contractors in advance of the commencement of the project;
- All segregation and waste storage areas will be inspected regularly by the appointed • Waste Manager;
- Waste will be stored on site, including metals, asphalt and soil stockpiles, in such a • manner as to:
 - Prevent environmental pollution (bunded and/or covered storage, minimise noise _ generation and implement dust/odour/pest control measures, as may be required);
 - Maximise waste segregation to minimise potential cross contamination of waste streams and facilitate subsequent re-use, recycling and recovery; and
 - Prevent hazards to site workers and the general public during construction phase (largely noise, vibration, dust and pests).

Waste Permitting, Licences & Documentation 6.2.2

Under the Waste Management (Collection Permit) Regulations 2007, as amended, a collection permit to transport waste, which is issued by the National Waste Collection Permit Office (NWCPO), must be held by each waste collection contractor.

Waste may only be treated or disposed of at facilities that are licensed or permitted to carry out that specific activity (e.g. chemical treatment, landfill, incineration, etc.) for a specific waste type.

Operators of such facilities cannot receive any waste, unless they are in possession of a Certificate of Registration (COR) or waste permit granted by the relevant Local Authority under the Waste Management (Facility Permit & Registration) Regulations 2007 and Amendments or a waste license granted by the EPA. The COR/permit/license held will specify the type and guantity of waste permitted to be received, stored, sorted, recycled, recovered and/or disposed of at the specified site.

Records of all waste movements and associated documentation will be held at the site. Records management and maintenance will be the responsibility of the Principal Contractor.

Further detail on waste documentation is provided in Section 10.

6.2.3 Predicted Waste Streams

The majority of the waste material generated by the proposed development will consist of excavated soil, gravel, rock associated with the proposed site layout. This material will be segregated from all other waste components in accordance with general waste segregation policy. Material that cannot be reused on site will be transferred to a Materials Recovery

Facility (MRF) by a fully licensed waste contractor where the waste will be further sorted into individual waste streams for recycling, recovery or disposal.

A temporary segregation bay will be set aside at the site for the duration of the construction and demolition phase of the development. The bay will include segregated areas for recyclable waste streams, such as gypsum (plasterboard), cardboard, timber, concrete/blocks/tiles, etc.

Cardboard

Cardboard will be segregated on site. The cardboard will be flattened and placed in a covered skip or tied and covered, to prevent the card getting wet. A recycling contractor will collect it as required.

Plasterboard

There will be a separate skip for plasterboard at the site. There are a number of specialist contractors that recycle plasterboard and they will be contracted to address this matter. Reprocessed gypsum powder, which makes up to 94% of the plasterboard, can be reprocessed into new plasterboard or converted for use in soil conditioners for the agricultural industry. The paper, which makes up to 6% of the plasterboard can be reused in various industries.

Soil/Subsoil

Excess excavated soil will be disposed of off-site. Soil will be removed and disposed of by contractors licensed under the Waste Management Act of 1996, the Waste Management (Permit) Regulations of 1998 and the Waste Management (Collection Permit) Regulations of 2001. This material will be used for fill material on other sites, or capping purposes on site, e.g. at a landfill.

Plastic

As plastic is now considered a highly recyclable material, much of the plastic generated during construction will be diverted from landfill and recycled. Clean plastic will be segregated at source and kept as clean as possible and stored in a dedicated covered skip.

Timber

There will be timber waste generated from the construction work as off-cuts or damaged pieces of timber. Timber that is uncontaminated, i.e. free from paints, preservatives, glues etc, will all be recycled. It will be stored on site in a designated skip, and collected by a recycling contractor. Such companies shred the timber and use it for manufacture of wood products or for landscaping (wood chips etc).

Scrap Metal

Steel is a highly recyclable material and there are numerous companies that will accept waste steel and other scrap metals. A segregated skip will be available for steel storage on site pending recycling.

Asbestos

A specialised contractor will be employed to remove asbestos from site and to ensure that all traces of contaminated material from the site. Asbestos containing materials will be disposed of at a licensed asbestos disposal facility.

Control Measures 6.2.4

The site control measures to manage and minimise waste include:

Signage on the site office/ welfare bins to separate them as environmental /domestic waste bins,

- Briefings for all sub-contractors via induction handouts,
- Specific checks in all waste carriers licences.

6.2.5 Monitoring and Measurement

All waste transfer notes will be checked and filed in the environmental plan for regular review and monitoring to ensure duty of Care Compliance.

The site control measured to manage and minimise waste include:

- Signage on the site office/ welfare bins to separate them as environmental /domestic ٠ waste bins,
- Briefings for all sub-contractors via induction handouts, ٠
- Specific checks in all waste carriers licences. •

Construction Phase Updates 6.3

Prior to commencing construction, the Contractor must update the resource inventory to list the following:

- Any changes to the management routes presented in the Design Phase Inventory; The nominated permitted haulier who will be employed for each stream must be named
- Any changes to the generation volumes presented in the Design Phase Inventory;
- ٠ along with the relevant permissions;
- The nominated destination site for all streams must be provided along with the relevant permissions.

Excavated Material Management 7.

Project works will result in the excavation of soils and rock as part of the site development. An intrusive site investigation was undertaken in early July and August 2018.

Laboratory testing was carried out on representative samples. The following tests were carried out:

- Natural moisture content. ٠
- Atterberg limits,
- PSD (Particle Size Distribution),
- Organic content, .
- Sulphate, Chloride and pH tests,
- WAC (Waste Acceptability Criteria) contaminant tests by Chemtest.

The results of the laboratory testing are included in Appendix A. No exceedance levels were identified in any of the samples tested.

The Principal Contractor will, as part of their SWMP, prepare a project-specific Excavated Material Management Plan, which will detail the following as a minimum:

- Detail in-situ (prior to excavation) and ex-situ (post excavation) methodologies to classify • waste soil for appropriate disposal, in accordance with relevant Irish and EU legislation and guidance, see Section 8.1 for more detail;
- Identify reuse requirements and soils suitable for reuse on site in consultation with the design team, including assessment methodology to determine which soils are suitable for re-use onsite, see Section 8.1.1 for more detail:
- Site management procedures, including waste minimisation, stockpile management, . temporary storage procedures, waste license requirements, see Section 8.1.2; and Waste Management documentation, including waste generation record keeping, waste transfer notes, confirmation of appropriate disposal and details of any rejected consignments.

7.1 **Excavated Soil & Materials**

The SWMP to be developed by the Principal Contractor will detail relevant procedures including further environmental sampling, testing and assessment requirements, sampling protocols and sample density targets to supplement the existing soil data.

Where any hotspots of potential contamination are encountered, and prior to disposal, further assessment will be undertaken by a suitably qualified environmental scientist to determine the nature and extent of remediation required.

Soil and Crushed Rock for Reuse on Site 7.1.1

Where the Principal Contractor proposes to reuse excavated soil or crushed rock within the works e.g. as backfill, or crushed rock within crib retaining walls and where reuse is permitted in accordance with the relevant legislation and provided that the reuse meets the engineering requirements for material used within the works, the Principal Contractor shall set out their proposal for its management, documentation and reuse. This shall include:

- Define the criteria by which the suitability of the soils for reuse will be assessed (e.g. • analytical parameters and limits);
- Delineation of areas where excavated soil is intended for disposal off-site as waste, and ٠ where it is intended for re-use on site:

- and its proposed re-use location and function;
- Engineering assessment to confirm its suitability for re-use; and •
- associated treatment permits or licenses required.

7.1.2 Excavated Material for Removal Off-site

Where appropriate, excavated soil and material intended for recovery or disposal offsite shall require appropriate waste classification in order to select an appropriate receiving facility for the waste.

Assessment of the excavated material shall be carried out with due regard to the following guidance and legislation:

- EU Council Decision 2003/33/EC establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 and Annex II of Directive 1999/31/EC (2002);
- and mixtures (CLP);
- and determining if waste is Hazardous or Non Hazardous; and
- the classification and assessment of waste.

Waste soil and material intended for offsite disposal, recycling or recovery shall not be removed from site prior to appropriate waste classification and receiving written confirmation of acceptance from the selected waste receiving facility.

7.1.3 Stockpile Management

Soil stockpiles might be generated as part of the operations, for example while classification and acceptance at a waste facility is pending or awaiting reuse.

The contractor will consider the following measures to ensure that stockpiles are managed in an appropriate manner:

- A suitable temporary storage area shall be identified and designated; •
- All stockpiles are to be assigned a stockpile number; ٠
- excavations;
- to reduce compaction;
- . or high-grade polythene sheeting to prevent cross-contamination of the soil below;
- Soil stockpiles are to be covered with high-grade polythene sheeting to prevent run-off of ٠ and/or the generation of dust; and
- stockpile prior to disposal.

An excavation/stockpile register shall be maintained on site showing at least the following information:

Identification and recording of the location from where the soil | rock will be excavated

Any proposed treatment or processing required enabling its reuse, as well as any

Regulation (EC) No. 1272/2008: the classification, labelling and packaging of substances

Environmental Protection Agency document entitled Waste Classification; List of waste

UK Environment Agency Technical Guidance WM3: Waste Classification - Guidance on

Stockpiles shall not be positioned adjacent to ditches, watercourses or existing or future

Soils will be stockpiled in the driest condition possible and tracked equipment will be used

Contaminated or potentially contaminated soil shall be stockpiled only on hard-standing

rainwater and leaching of potential contaminants from the stockpiled material generation

Mixing of unclassified stockpiles of different origin, or of stockpiles having different classification, will not be carried out. When a stockpile has been sampled for classification purposes, it shall be considered to be complete and no more soil shall be added to that Construction and Demolition Waste Management Plan

- Stockpile number: ٠
- Origin (i.e. location and depth of excavation);
- Approximate volume of stockpile;
- Date of creation:
- Description and Classification of material; .
- Date sampled:
- Date removed from site;
- Disposal/recovery destination; and
- Photograph. ٠

8. Hazardous Materials Waste Management

As the subject site is primarily greenfield and has not been developed previously it is not anticipated that hazardous material will be encountered during construction works. No contaminated materials were identified as part of the ground investigation work undertaken in 2018.

Where hazardous waste is generated/ encountered, the Principal Contractor must undertake the following:

- Immediate notification of the nature of the hazardous waste to the design team in writing;
- Submission of a revised plan detailing the nature and management of the hazardous • waste prior to off-site waste disposal; and
- The Principal Contractor must establish a specific procedure for the management of the asbestos cement watermain which traverses the site. The management of such wastes shall be co-ordinated with the client representative. Irish Water and in accordance with the Safety and Health Plan for the overall works, in order to ensure that personnel within the construction site and the local residents are protected against exposure to asbestos. Prior to commencement of any asbestos removal works, the Principal Contractor shall identify a suitable Waste Collection Contractor with a Waste Collection Permit for the transfer of the asbestos cement pipework.

9. Waste Management Documentation

This plan will be updated by the Contractor to include a Waste Documentation System. The Principal Contractor will be responsible for implementation and auditing the Waste Documentation System on a regular basis.

The documentation to be maintained, as a minimum, shall be the following:

- The names of the agent(s) and transporter(s) of the wastes;
- The name(s) of the person(s) responsible for the ultimate recycling, recovery or disposal of the wastes;
- The ultimate destination(s) of the wastes; ٠
- Written confirmation of the acceptance and recovery, recycling or disposal of any waste • consignments;
- The tonnages and LoW code for all waste materials; ٠

Bluescape Limited Project number: 60592432 Construction and Demolition Waste Management Plan

- Details of any rejected waste consignments;
- appendices;
- abroad:
- Written documentation of waste classifications, including any related analyses; and
- Certificates of Recycling, Recovery, Re-Use or Disposal for all wastes transferred from • the site.

All waste records will be maintained for at least a period of 3 years and must be subject to verification and validation. All waste documentation will be maintained and made available for inspection by the Principal Contractor. This will be stored in a safe place, preferably on site, during the project implementation phase. Electronic records will be placed on a secure server that is backed up regularly.

Allowance of time and resources will be made to collate outstanding waste records once the project implementation phase has been completed.

Financial Issues of Waste 10.

An outline of the cost issues that should be considered associated with different aspects of waste management is provided below.

Reuse/Recovery 10.1

By reusing materials on site, there will be a reduction in the transport and disposal costs associated with the requirement for a waste contractor to take the material away to landfill. Clean and inert soils, gravel, stones etc. which cannot be reused on site may be classified as a by-product (under Article 27 of the 2011 Waste Directive Regulations), used as capping material for landfill sites, or for the reinstatement of quarries etc. subject to approvals by EPA. This material is often taken free of charge for such purposes, or when used as capping in landfills will not attract the landfill tax levy, thereby reducing final waste disposal costs.

Rock excavated on the site could be used as granular fill within crib retaining walls if crushed and graded to form a well graded granular material with low fines content.

10.2 Recycling

Salvageable metals will earn a rebate which can be offset against the cost of collection and transportation of the skips. Clean, uncontaminated cardboard and certain hard plastics can be recycled. Waste contractors will charge considerably less to take segregated wastes such as recyclable waste from a site than mixed waste. Timber can be recycled as chipboard. Again, waste contractors will charge considerably less to take segregated wastes, such as timber from a site than mixed waste.

Disposal 10.3

Typically, the current cost of disposal of waste of landfill exceeds €170 per tonne. From 1st July 2013, in accordance with the Waste Management (Landfill Levy) (Amendment) regulations 2013, the landfill level increased to €75 per tonne for waste disposed to landfill.

In addition to disposal costs, waste contractors will also charge a collection fee for skips. Collection of segregated C&D waste usually costs less than municipal waste. Specific C&D waste contractors take the waste off-site to a licensed or permitted facility and, where possible, remove salvageable items from the waste stream before disposing of the remainder to landfill. Clean soil, rubble, etc. is also used as fill/capping material wherever possible.

Waste Transfer Forms (WTF) for hazardous wastes transferred from site and associated

Completed Transfrontier Shipment Forms (TFS) for hazardous wastes transferred

11. Waste Audits

Details of the inputs of materials to the project site and the outputs of wastage arising from the Project will be investigated and recorded in a Waste Audit undertaken by the Principal Contractor.

This audit will identify the amount, nature and composition of the waste generated on the site. The Waste Audit will examine the manner in which the waste is produced and will provide a commentary highlighting how management policies and practices may inherently contribute to the production of demolition waste.

The Principal Contractor will be responsible for undertaking regular waste auditing and consulting with the local authority. The Design team may review the findings of the waste audits during the course of the construction stage. It is noted that this plan will be treated as a "live" document and regular review and update will be informed by the audit findings.

12. Waste Management Plan Awareness & Training

Copies of this plan must be made available to all personnel on site.

All site personnel and sub-contractors will be instructed about the objectives of these plans and informed of the responsibilities which fall upon them as a consequence of its provisions. Where source segregation and selective material reuse techniques apply, each member of staff will be given instructions on how to comply with the plan.

Posters will be designed to reinforce the key messages within the plan and will be displayed prominently for the benefit of site staff. Specialist training as may be required (e.g. asbestos containing materials handling) will be assessed or provided as required.

aecom.com

VOLUME III | Appendices

AECOM

Outline Construction & Environmental Management Plan

Quality information

Prepared by

Checked by Guma Millendrich

Aileen Prendergast Principal Engineer Emma McKendrick Regional Director

Revision History

Revision	Revision date	Details	Authorized	Name	Position	
0	3rd December 2021	Issued for Planning	AP	Aileen Prendergast	Principal Engineer	

Distribution List

# Hard Copies	PDF Required	Association / Comp
10	Yes	Westhill/ HW Plannin MHL/ AWN

Outline Construction & Environmental Management Plan

Glounthaune SHD

Bluescape Limited

Project number: 60592432 60592432-ACM-00-XX-RP-CE-00-0003

Verified by

Emma Millenovich

Emma McKendrick Regional Director

Approved by

APrenchigant

Aileen Prendergast Principal Engineer

bany Name

ng/ Deady Gahan Architects/ CSR/ Kelleher Ecology/

Prepared for:

Bluescape Limited

Prepared by:

AECOM Ireland Limited 1st floor, Montrose House Carrigaline Road Douglas, Cork T12 P088 Ireland

T: +353 21 436 5006 F: +353 21 436 5156 aecom.com

© AECOM Ireland Limited. All Rights Reserved.

This document has been prepared by AECOM Ireland Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

Tab	le of	Contents
1.	Intro	duction
	1.1	Background
	1.2	Site Location
	1.3	Proposed Development
	1.4	Legislative Basis for the CEMP
	1.5	Construction Programme and Phasin
2.	Grou	nd Conditions
3.	Earth	works
4.	Site L	_ogistics
	4.1	Sequence of Works
	4.2	Excavation
	4.3	Removal of Mature Trees
	4.4	Protection of Existing Trees
	4.5	Protection of Existing Grotto
	4.6	Invasive Plants
	4.7	Site Security Fencing and Hoarding
	4.8	Site Facilities during Construction
		Site Facilities
		Facility Locations
	4.9	Site Working Hours
		Site Security
	4.11	
_	4.12	COVID-19
5.		c Management
	5.1	Construction Route
		Vehicle Movements
	5.2	Contractor's Traffic Management Plan
c	5.3	Measures to Minimise Construction V
6.	6.1	onmental Management
	6.2	Environmental Impact Assessment Re Site Control Measures
	6.3	Material Handling and Storage
	6.4	Spill Control Measures
	6.5	Foul Drainage
	6.6	Surface Water Drainage
	6.7	Water Supply
	6.8	Noise & Vibration
	6.9	Dust & Air Quality
	6.10	Fire and Explosion
	6.11	Disposal of Materials
	6.12	Communication
	6.13	Sustainability
7.		toring & Protection of Neighbouring Pr
	7.1	Monitoring Works Specialist
	7.2	Condition Schedules
	7.3	Movement & Vibration
	7.4	Noise & Dust Monitoring / Control
	7.5	Recording
•		

Appendix A IAPS Management Plans

sing	
	14
g	
	-
	19
	19
	19
	20
	20
	20
Plan	21
n Vehicle Movements	22
	23
t Report	23
·	23
	24
	25
	-
Properties	31
	51
	31
	31
	31 31
	31 31 31
	31 31 31 31

1. Introduction

1.1 Background

AECOM were appointed by Bluescape Limited to prepare an outline Construction and Environmental Management Plan (CEMP) in support of a Strategic Housing Development (SHD) planning application to An Bord Pleanála for a proposed residential development at Glounthaune, Co. Cork.

This CEMP has been prepared to accompany the planning application for the proposed development. The proposed layout of the development is detailed in the planning drawings prepared by Deady Gahan Architects.

The purpose of this report is to ensure that best construction management practices are applied to the site by the main contractor and that measures are in place during construction to reduce as much as possible the impact of the works on people, property, and the environment. The contractor will be required to develop this outline report further in line with his/her detailed requirements.

The proposed activities include site preparation, excavation, building and construction, services installation, materials delivery, materials and waste removal and any other associated engineering works. A Construction and Demolition Waste Management Plan has also been prepared to accompany this application.

1.2 Site Location

The current site comprises of a greenfield site. The site measures approximately 13.87 ha in total. The majority of the site is located to the north of The Terrace Road ('the Terrace') with a small part of the site located to the south of 'the Terrace'. There is a considerable variation in ground levels across the site which has been considered in developing the proposed layout. The site slopes from north to south from approximate +110 m OD Malin to +34.5 m OD Malin on The Terrace to approximately +3.30 m OD Malin.

The northern part of the site is bounded by existing residential developments to the north, west and south. Agricultural land bounds the site to the east. The southern part of the site is bounded by the L-2970, known locally as 'the Terrace' to the north, existing dwellings to the east and west and Johnstown Close to the south. The public road network surrounding the site is defined by the L-2969 to the north, the L-2968 to the west, and the L-2970, known locally as 'the Terrace to the south.

1.3 Proposed Development

The proposed development consists of the construction of a mixed-use residential development of 289 no. residential units consisting of 201 no. dwelling houses and 88 no. apartment/duplex units, a two storey creche, 4 no. ESB substations and all ancillary site development works at Lackenroe and Johnstown (townlands), Glounthaune, Co. Cork. The proposed development will be constructed on lands to the north and south of the public road, L-2970, known locally as 'the Terrace'. A portion of the site to the south of 'the Terrace' was formerly within Ashbourne Garden and is considered to be within the curtilage and attendant grounds of Ashbourne House, which is a Protected Structure (Ref 00498).

The proposed development to the north of 'the Terrace' provides for 260 no. residential units comprising of 196 no. dwelling houses, 64 no. apartment/duplex units and a two storey creche. The 196 no. dwelling houses includes 5 no. 4 bedroom detached dwellings, 44 no. 4 bedroom semi-detached dwellings, 12 no. 4 bedroom townhouses, 2 no. 3 bedroom detached dwellings, 22 no. 3 bedroom semi-detached dwellings, 47 no. 3 bedroom townhouses and 64 no. 2 bedroom townhouses.

Figures

Figure 1 – Site Location and Layout	7
Figure 2 – Proposed Phasing Plan	
Figure 3 – Typical Detail of Protective Barrier	
Figure 4 – Proposed Site Facilities – Phases 1 & 2	
Figure 5 - Proposed Site Facilities – Phase 3	18

Tables

Table 3-1. Estimated Excavation Quantities	11
Table 6-1. Maximum permissible noise levels at the facade of dwellings during co	
Table 6-2 Vibration Limits (PPV)	
Table 6-3 Guidance on human response to vibration levels	

The 64 no. apartment/duplex units contains 5 no. 3 bedroom units, 32 no. 2 bedroom units and 27 no. 1 bedroom units contained in 6 no. three storey apartment buildings, with ancillary bicycle parking and bins stores.

The proposed development to the south of 'the Terrace' provides for 29 no. residential units comprising of 5 no. dwelling houses and 24 no. apartments. The 5 no. dwellings include 1 no. 3 bedroom detached dwelling, 2 no. 3 bedroom townhouses and 2 no. 2 bedroom townhouses. The proposed apartments are provided in a four-storey mixed-use building containing a ground floor community unit and a commercial unit with apartments at ground and upper floor levels comprising 3 no. 3 bedroom units, 7 no. 2 bedroom units and 14 no. 1 bedroom units with ancillary rooftop terrace, car parking, bicycle parking and bin stores.

Vehicular access to 2 no. dwellings in the lands to the north of 'the Terrace' will be provided via an upgraded entrance from 'the Terrace' with vehicular access to the remainder of dwellings in the lands to the north of 'the Terrace' via the signalised junction from the L-2968 and internal road network permitted by Cork County Council reference 17/5699 and An Bord Pleanála reference 300128-17. A separate secondary emergency access is also proposed from the L-2969 to the north.

Vehicular access to the 5 no. dwellings to the south of the 'the Terrace' will be via a new entrance from 'the Terrace' and the proposed apartment building will be accessed from Johnstown Close. The proposed development also makes provision for a pedestrian link from the proposed development north of 'the Terrace' to Johnstown Close via 'the Terrace' which will include a signalised pedestrian crossing and associated traffic calming measures on 'the Terrace'.

Ancillary site works include the demolition of 1 no. existing derelict dwelling house and associated outbuildings, landscaping and servicing proposals including the realignment of the existing pedestrian/cycle route on Johnstown Close, the undergrounding of existing overhead lines, upgrade of the storm and foul sewer network to the south and east of the subject lands along 'the Terrace' and Johnstown Close (L-3004).

Figure 1 illustrates the extent and layout of the proposed development.

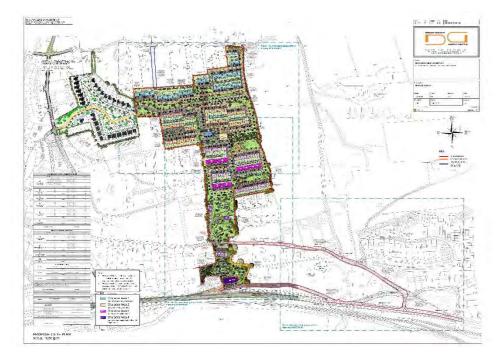


Figure 1 – Site Location and Layout

Construction & Environmental Management Plan

1.4 Legislative Basis for the CEMP

This Construction and Environmental Management Plan is to be read in conjunction with the EIAR prepared for the project. This Construction and Environmental Management Plan is a 'live' document and must be managed and updated throughout the construction phase as required by the main contractor and it is intended that any such revisions to this Construction and Environmental Management Plan will be agreed with the local authority. In particular, the CEMP will be updated to ensure the requirements of all relevant planning conditions are incorporated.

1.5 Construction Programme and Phasing

Access to the proposed development site will be from the existing public road adjacent to the northern end of the site. The estimated duration of the construction phase of this project is 48 months. Vehicular access to the lands to the north of 'the Terrace' will be via the signalised junction from the L-2968 and internal road network permitted by Cork County Council reference 17/5699 and An Bord Pleanála reference 300128-17 with a separate secondary emergency access proposed to the L-2969 to the north. Vehicular access to the 5 No. Units located to the south of the Terrace will be provided from the Terrace.

As per the Phasing strategy included in Figure 2, it is proposed to construct 97 Units, including the creche, community facility & commercial unit (shown in blue) in Phase 1. This phase also includes the construction of the development access road through the site along with the pedestrian paths traversing from north to south through the site and proposed drainage networks.

As part of Phase 2 it is proposed to construct 93 Units along the western boundary of the site (shown in green in Figure 2). As part of Phase 3 it is proposed to construct 99 Units along the eastern boundary (shown in yellow in Figure 2).

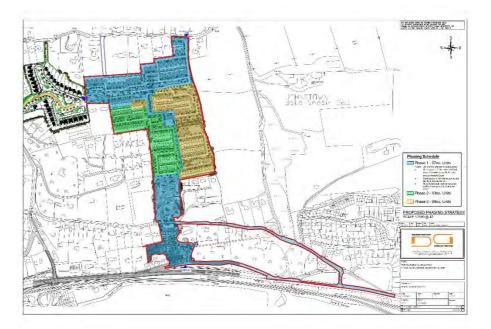


Figure 2 – Proposed Phasing Plan

3. Earthworks

The draft bulk earthworks are associated with the site strip and levelling & re-grading of the site to accommodate the proposed residential units, road/footpath gradients as necessary. Additional information is provided in the Constraints Reports accompanying this application.

Pedestrian footpaths provide connectivity between all parts of the development. Universally accessible footpaths link from Killahora Road to Johnstone Close and also to Knockraha Road ensuring full pedestrian permeability. Non-disabled routes are also provided.

The levels of the path to the north of the Terrace typically results in cut and fill not exceeding 1.5m, the exception being the path between chainages 180m and 290m where the overall depth of excavation is 2.3m and at chainage 410m to 470m where approximately 2.0m of fill material is required to tie in with the road level of 64.950 m OD Malin.

Side slopes at a gradient no steeper than 1 in 2 are proposed. Generally, the distance required to tie back into the natural ground level is circa 2m, with one exception occurring at chainage 200m where the distance is circa 7.5m.

Short lengths of retaining walls will be required, particularly where the path turns back on itself as it meanders up the slope. It is proposed that these retaining structures be generally formed with timber permicrib gravity retaining wall system with small sections formed with Gabion baskets filled with rock excavated and crushed on site. The retained height throughout is typically 2m.

The levels of the path to the south of the Terrace typically results in cut not exceeding 3.0 m. The extent of this 3m excavation is limited to chainage 390m. The level of the path typically results in fill not exceeding fill 3.5 m. The extent of this fill is limited to the area around chainage 250 m.

Short lengths of retaining walls will be required, particularly where the path turns back on itself as it meanders up the slope. It is proposed that these retaining structures be generally formed with timber permicrib gravity retaining wall system with small sections formed with Gabion baskets filled with rock excavated and crushed on site. The retained height throughout is typically 2m.

The 3m wide footpath will have 1m wide verges with pedestrian guard rail protection at embankment edges. The guardrail protection will also prevent people taking shortcuts between the meandering path.

The choice of introducing embankments or retaining structures was influenced by minimising excavation of rock and also to retain existing trees where possible.

The development as proposed has been designed to work with the natural constraints of the site and successfully overcome them to achieve an accessible, integrated, permeable site layout and design.

The site has been modelled in the Civil 3D software package. Excavated overburden and rock will be used as fill on the site. The estimated earthworks quantities are set out in Table 3-1 below.

Existing topsoil will be retained on site to be used for the proposed development. Topsoil will be stored in an appropriate manner on site for the duration of the construction works and protected for re-use on completion of the main site works.

During the demolition and construction phase, all excavations and exposed sub-soils in open cuts will be blinded and protected with clean broken stone as soon as possible after exposing the subsoil in order to prevent erosion.

2. Ground Conditions

Ground investigation has been carried out by Priority Geotechnical Limited (PGL). The typical sequence of stratigraphy is given below.

- 1. Stratigraphy: 300 mm to 400 mm thick topsoil. Superficial glacial deposits were described as firm to stiff, slightly sandy (slightly) gravelly CLAY/ SILT with varying Cobble content 0.7m to 2.1m thick and granular deposits of (very) silty (very) sandy GRAVEL and (very) sandy (very) clayey GRAVEL with varying cobble content 0.3m to 3.0m thick persisted to depths 1.0m bgl to 4.0m bgl. Typically, the CLAY / SILT deposit transitioned to the GRAVEL overlying the bedrock. No groundwater was encountered. The weathered rock mass was 1.0m to 4.0m below existing ground level (bgl).
- 2. Bearing capacities: The following was noted by PGL in relation to bearing capacities:

"A presumed bearing pressure of 75kN/m² to 150 kN/m² (kPa) is expected of the 'firm to stiff' Clay/ Silt deposits (BS8004, Code of practice for foundations, 1986). A characteristic undrained shear strength of 90kPa is recommended at a depth below 1.0m bgl, describing the stiff deposits. Taking a partial factor of safety, 1.4 a bearing capacity factor Nc = 5.14 yielded an ultimate bearing pressure of 330kPa in the glacial deposits (Skempton, 1951). A characteristic Nspt= 15 was indicative of an allowable bearing pressure 150kPa, (Terzaghi and Peck, 1967) for settlements up to 25mm within the Clay/ Silt deposits. Foundations shall be within the 'firm to stiff' glacial deposits below a depth of 1.0m bgl. Shallow strip and pad foundations are an acceptable foundation form. Services and utilities will be adequately supported within the glacial deposits.

Some over excavation can be expected where undrained shear strength of 40kPa to 61kPa were identified (BH02 and BH08), noting further similar locations may be present. An allowable bearing pressure of 75kPa to 100kPa is expected in such locations.

Foundations within SILTSTONE bedrock BS8004 (1986) identified a presumed bearing value of 2,000 kN/m² (kPa) for non-weathered strong sedimentary rock mass. In accordance with Figure 1 — Allowable bearing pressures for square pad foundations bearing on rock (for settlement not exceeding 0.5 % of foundation width) this should be reduced to a value of 250MPa for an assumed Group 4, weak, un-cemented and fractured rock mass."

- 3. Groundwater: No groundwater was encountered in the trial pits or boreholes.
- 4. Contamination: contamination testing indicates that the material on site is suitable for disposal at an inert waste facility.
- 5. Sulphates & Ph values for concrete: Based on the pH (7.2 and 7.9) and sulphate (<0.010g/l 1.2g/l/ <0.010% to 0.3%) data indicate design sulphate class DS-1 in accordance with BRE Digest for concrete in aggressive ground for static groundwater conditions. In general, there are no special requirements with regard to concrete mix design. Note BH01 at 1.0m indicated a DS-2 classification and with an acid soluble sulphate >0.2% (I.S.398 Pt. 1).

Site Logistics 4.

4.1 Sequence of Works

It is estimated that the overall duration of the Construction Phase will be approximately 48 months. The main stages of construction will be progressed based on the following:

- Complete any necessary pre-construction surveys. Please refer to the EIAR • accompanying this application for specified surveys. Implement all recommended environmental mitigation measures arising from the
- preconstruction surveys,
- Confirm utility locations and divert utilities, •
- Establish contractor's site compound and erection of site hoarding, •
- Site clearance and top soil stripping,
- Cut and fill to level and re-grading works within site to formation level, •
- Installation of services (drainage networks, water supply, electricity, etc.),
- Construction of roads, footpaths & hard/ soft landscaping, .
- Installation of foundations/ footings for buildings and retaining walls,
- Construction of new buildings (houses, duplex units and creche),
- Connection to public services,
- Installation of substations, •
- Provision of proposed road finishes, .
- Provision of landscaping finishes,
- Complete all site finishes. •

Completion of any required testing and commission services within the development. • The above will be undertaken for each of the phases set out in Section 1.5.

4.2 Excavation

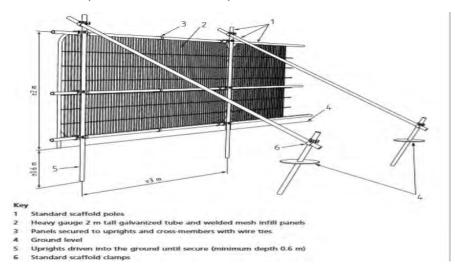
The proposed development will involve excavation, stripping of topsoil and removal of material from site for platform installations and regrading of the site profile.

4.3 **Removal of Mature Trees**

Removal of vegetation will include removal of several hedgerows and there are approximately 133 no. trees to be felled.

- A category: 4 No. trees, •
- B category: 56 No. trees. •
- C category: 57 No. trees, •
- U category: 16 No. trees. These are trees which are not considered to be of value and • some which are dead.

For details of each category please refer to the Arborist Report prepared for the subject development. For further information relating to the landscape proposals, please refer to Chapter 4 of the EIAR and the Landscape Report prepared by CSR.


Protection of Existing Trees 4.4

Protective barriers must be installed by the Contractor around trees to be retained prior to the commencement of works on site. The locations of all tree protection barriers will be as shown on the Tree Protection Plan (TPP) prepared by CSR and as per BS5837. These barriers will remain in place for the duration of the works. Section 4 of the Arboricultural Survey Report

Material	Cut Volume (m ³)	Fill Volume (m ³)	Net Volume (m ³)
Top Soil (400 mm depth)	41,772	13,925	27,798
Overburden	53,964	53,964	0
Rock	18,565	12,602 (crushed rock as fill)	5,963

Soil stripping, earthworks and stockpiling of soil and rock on site will be carried out during the works. Rock will be crushed and re-used on site. Stockpiles have the potential to cause negative impacts on air and water quality. The effects of soil stripping and stockpiling will be mitigated through the implementation of an appropriate earthworks handling protocol during construction. It is anticipated that any stockpiles will be formed within the boundary of the excavation and there will be no direct link or pathway from this area to any surface water body. It is anticipated that only local/low level of stockpiling will occur as the bulk of the material will be excavated either straight into trucks for transport off site or will be reused in other areas of the site as fill. Any excavated material to be disposed off-site will go to a licensed facility. The maximum number of HGV movements during the construction phase will be 15 HGV's per day.

provides additional detail on the protective barriers to be provided. Figure 3 illustrates a typical detail of the protective barriers required.

Figure 3 – Typical Detail of Protective Barrier

Protection of Existing Grotto 4.5

There is an existing Grotto Structure within the portion of the site to the south of 'the Terrace' (E:577287, N:573397), to the east of the existing apartment block. For further details of the existing grotto structure please refer to Chapter 11 of the EIAR (Cultural Heritage).

An inspection of the existing grotto structure was undertaken by John Cronin & Associates and the following was noted:

"An inspection of the accessible interior of the random rubble structure did demonstrate that it is constructed with poorly sorted, unhewn limestone blocks, perhaps sourced from quarry rubble. The inspection also revealed that sections of the stonework are roughly bonded with a concrete-rich aggregate mortar, but it was unclear if this material represented later repair works or was an original element of the structure. Overall, the walls of the structure have a "dry stone" appearance."

A method statement describing the steps to be taken in advance of commencing construction has been prepared by John Cronin & Associates. The following measures are to be undertaken in advance of commencing construction.

- The principal requirement will be the demarcation and protection of the structure prior to • commencement of any site development works. Given the overgrown nature of the structure, it is easily overlooked and consequently vulnerable to inadvertent damage through tree-felling and machine/plant movements. Prior to site clearance works commencing, the existing grotto must be clearly identified on site with a barrier provided to prevent machinery/vehicles impacting the structure. The existing grotto structure must remain clearly identified for the duration of the contract.
- Tree felling activities in the area must be carefully undertaken to avoid impact on the existing structure. The methodology for tree felling must ensure measures are incorporated to prevent trees being dropped from height and hitting the existing grotto structure and the ground adjacent to it.
- Prior to commencing works, the Contractor must hold 'toolbox talks' with all staff and sub-• contractors to ensure all are aware of the location and sensitivity of the existing grotto structure. This must include any relevant conditions of the planning permission.
- A masonry conservation specialist shall be appointed to oversee the demarcation and • vegetation clearance for the creation of a buffer/protection zone. The conservation specialist may require the assistance of a tree surgeon to undertake targeted tree-felling. At later stages of the works, the protection/buffer zone will provide protection from

construction activity/traffic associated with the wider site. The fencing will also control access mortar mixing area and storage of materials.

- the duration of the contract.
- measures.
- arotto structure.
- area.
- construction.

Following substantial completion of the proposed development works in this part of the overall site, the conservation works set out in Chapter 11 of the EIAR (prepared by John Cronin & Associates) are to be undertaken on the grotto structure.

4.6 **Invasive Plants**

An Invasive Alien Plant Species (IAPS) Survey has been undertaken of the subject site (May 2021). A number of non-native invasive plant species listed on the Third Schedule of the 2011 European Communities (Birds and Natural Habitats) Regulations (*i.e.* species of which it is an offense to disperse, spread or otherwise cause to grow in any place) are present at the study site as follows (see IPS 2021);

- Bohemian Knotweed (Fallopia Bohemica), ٠
- Himalayan Knotweed (Persicaria wallichii),
- Three-cornered Garlic (Allium triguetrum),
- Spanish Bluebell (Hyacinthoides hispanica),
- Rhododendron (Rhododendron ponticum), and •

The structure will be demarcated by buffer zone consisting of a temporary demountable fence (i.e., "Heras" fence or similar) that provides a minimum of 2.7 metres clearance around the structure. To achieve the clearance to erect the fence line, trees and shrubbery within the buffer zone should cut back, taking due care to prevent damage to the structure. No removal of embedded roots (or grubbing up of the ground surface) should be undertaken without the express consent/approval from the masonry conservation specialist. The contractor must regularly inspect the fencing and buffer zone throughout

On the careful removal of the vegetation to expose the structure and prior to works commencing, a full appraisal of the structure, including the compilation of detailed drawn and photographic records, will be undertaken by the masonry conservation specialist. If necessary, scaffolding can be erected to provide safe access to the upper portions of the structure. At this juncture, the masonry specialist may specify additional conservation

The Contractor must adhere to the vibration limits set out in Section 6.8 of this document. In order to ensure that the site activities are conducted to minimise the vibration impacts on the existing grotto, vibration monitoring shall be conducted during the course of the works associated with the proposed apartment block and path through the site to the south of 'the Terrace'. It is proposed that vibration monitoring will be conducted using calibrated vibration monitors and geophones and that audible and visual alarm units are installed to ensure if vibration levels approach or exceed the specified limits, site personnel will be alerted to cease at the earliest instance and appropriate mitigation measure may then be implemented to minimise the vibrational impact on the existing

To provide protection and support during construction, the contractor is to place sandbags within the grotto structure, up to a height of 1m below the existing roof level. This will provide a dampening effect on vibrations while also providing internal support to the grotto for the duration of the works on site. The sand bags are only to be removed as part of the conservation works to be undertaken following substantial completion of the works in this

In the event of damage occurring during construction repairs can be made as part of the conservation works based on the recording of the structure undertaken prior to

American Skunk Cabbage (Lysichiton americanus). •

A dedicated Invasive Plants Survey and Management Plan has been developed in relation to these Third Schedule species (IPS 2021).

The locations of each of these IAPS are presented in the IAPS Site Assessment Report and Management Plan. This report also details the treatment programme recommended for each IAPS and is to be implemented on the subject site.

As requested by Cork County Council, the provisions of the Invasive Alien Species Management Plan are included in this CEMP.

Prior to and following commencement of the proposed development the recommended treatment plan must be implemented on site. The appropriate treatment plans recommended by Invasive Plant Solutions for each of the IAPS are included in Appendix A. The recommended treatment plans are to be implemented by the Contractor as part of the works.

Other non-native plant species are also present at the study site (that are not listed on the Third Schedule) that will also need to be managed in accordance with best practice guidelines;

- Buddleia (Buddleia davidii), •
- Winter Heliotrope (Petasites fragrans),
- Snowberry (Symphoricarpos albus), .
- Cotoneaster (Cotoneaster sp.),
- Fuchsia (Fuchsia magellanica), ٠
- Lawson Cypress (Chamaecyparis lawsoniana), and •
- Cypress Leyland (Cupressus x leylandii species). ٠

A site assessment by a suitably gualified/experienced Ecologist or Invasive Plant Specialist prior to enabling/construction activities will be required to assess the most up-to-date status of all non-native invasive plants at the site relative to the works area.

Site Security Fencing and Hoarding 4.7

Site hoarding and barriers will prevent unauthorised access to each works area. A minimum 2.4 m high plywood painted timber hoarding is to be provided around working areas. Heras type fencing will be used on short term site boundaries where appropriate to suit the works. The site compounds will each be fenced to deter unauthorised access. The contractor must regularly inspect and maintain the condition of the hoarding throughout the duration of the contract.

Controlled access points to the site, in the form of gates or doors/turnstiles, will be kept locked for any time that these areas are not monitored (e.g., outside working hours). During working hours, a gateman will control traffic movements and deliveries at any active site access to ensure safe access and egress to & from site onto the public roads. All personnel working on site must have a valid Safe Pass card and be inducted by the Main Contractor with regard to site specific information.

The external hoarding and walkways must be maintained in good condition during the construction period. The external hoardings and walkways must not obstruct any drainage, surface water channels or traffic signals, signs, or lights.

The external hoarding and walkways are to be painted with two coats of an approved synthetic paint. Any logo and lettering as shown on drawings/details are to be provided by competent graphics painters and calligraphers.

Construction & Environmental Management

No fences or hoarding is to be used for advertising purposes and the Contractor must keep the fences or hoarding clear from advertisements.

4.8 Site Facilities during Construction

4.8.1 **Site Facilities**

It is estimated that 50 staff will be required on site. Site facilities will be provided at three locations within the extent of the proposed development. The on-site accommodation will consist of:

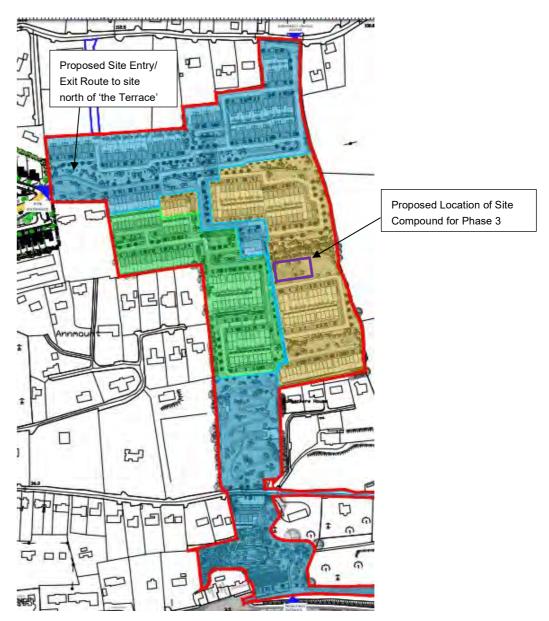
- Contractor's office space, •
- Meeting room/ H&S Room, first aid room, ٠
- Separate male and female toilet facilities with a minimum ratio of 1 to 20, •
- Drying room, ٠
- food.
- Storage containers and bicycle storage, •
- Materials storage areas and drop off.

All facilities shall have adequate heat and lighting and shall be cleaned regularly.

Temporary water supply, electricity supply and foul drainage will be required for the new facilities. Connections to electricity & water are available close to the site boundary. A temporary potable water supply will be provided from the adjoining development to the west. Foul drainage will need to be taken to a vented holding tank for regular removal by suction tanker.

It is intended to limit construction staff parking and to encourage the use of public transport (e.g., Cork Middleton rail line) for the journey to and from the subject site. A number of car parking spaces will be provided on a temporary basis for use by the contractor adjacent to the site compound. Construction parking will be managed/ controlled by the contractor subject to the requirements of any planning conditions.

Adequate fire protection and means of escape will be in place. It will be the responsibility of the contractor to provide and maintain the required standard throughout the project and the contractor will inform all operatives of the welfare arrangements for the contract during site inductions.


4.8.2 Facility Locations

It is proposed to provide the facilities described in Section 4.8.1 at a number of locations within the overall proposed development. A temporary hardstanding area, located as shown in Figure 4 will be provided for the portions of Phase 1 located to the north of 'the Terrace' and Phase 2.

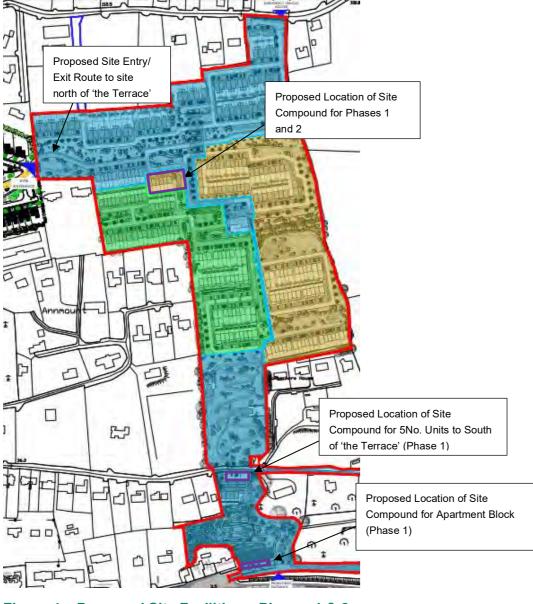
As part of the development of the lands to the south of 'the Terrace' during Phase 1, (includes a section of the proposed path, the 5 no. dwelling houses and 24 no. apartments) it is proposed to provide a temporary hardstanding area within the proposed car park adjacent to 'the Terrace' and within the proposed parking spaces adjacent to the apartment block. This will provide limited material storage, site facilities and car parking for the works associated with the path, the 5 no. dwelling houses and 24 no. apartments to the south of 'the Terrace'.

Site canteen with drinking water, hot water, seating, plus facilities to heat and refrigerate

Construction & Environmental Management

Figure 5 - Proposed Site Facilities – Phase 3

4.9 **Site Working Hours**


Unless otherwise required by the requirements of the planning permission, it is proposed that standard construction working hours will apply, i.e.:

- 7am to 6pm Monday to Friday,
- 8am to 2pm on Saturdays.

Any works proposed outside of these periods shall be strictly by agreement with the Local Authority in advance.

In order to mitigate any impact of construction activities, the following measures are proposed:

- Coordination of deliveries to site within working hours, ٠
- Scheduling of noisier activities early in the working day, ٠
- Noise and vibration mitigation measures as per Section 6.8 of this plan. •
- vehicles are parked within the site.

Figure 4 – Proposed Site Facilities – Phases 1 & 2

Following completion of Phases 1 and 2, it is proposed to relocate the site facilities for the duration of Phase 3. A temporary hardstanding area, located as shown in Figure 5 will be provided for Phase 3 of the proposed development.

The delivery of materials to the site during the construction phase shall be organised so that deliveries are minimised and do not cause traffic hazard, deliveries not permitted at peak times of traffic 8.00am to 9.00am and 5.00pm to 6.00pm and that all construction The Contractor will be responsible for the security of the site. The Contractor will be required to:

- Operate a site induction process for all site staff.
- Ensure all site staff shall have current 'safe pass' cards.
- Install adequate site hoarding to the site boundary.
- Maintain site security staff at all times.
- Ensure restricted access is maintained to the works.

4.11 Health and Safety

All construction works will be carried out under appropriate supervision. Works will be carried out by experienced contractors using appropriate and established safe methods of construction. All requirements arising from statutory obligations including the Safety, Health and Welfare at Work Act and associated regulations will be met in full. The Contractor must also comply with all guidelines and procedures in accordance with IÉ specification documents.

All site works to be completed as per the Safety, Health and Welfare at Work (Construction) Regulations 2013. All personnel working on site must have a valid Safe Pass card and have completed PTS training.

4.12 COVID-19

The Contractor is to follow the latest CIF safety protocols for COVID-19 in relation to all activities on site, in relation to travel to & from home to site for all staff, in relation to site visitors and in relation to any other relevant activities connected with the construction of the development.

5. Traffic Management

The Contractor is to inform and educate all regular suppliers and all sub-contractors and delivery drivers of the basic protocols. All deliveries will be controlled at the identified compound location. The designated storage area will be identified prior to taking delivery of the materials and the driver will be directed to the compound. Site access, and the delivery of construction materials, will be carefully planned and managed throughout the construction works. Site access to the Contractor compound area will be via the existing public road to the north of the site (refer to Figure 2).

No works associated with the proposed development are to commence until the signalised junction permitted by Cork County Council reference 17/5699 and An Bord Pleanála reference 300128-17 is operational.

The Contractor will ensure that deliveries are coordinated on site so that trucks do not block the road outside the site. Delivery drivers will wear full PPE as per the site rules and sign the delivery rules at the controlled entrance gate. The site will be fenced and sealed with access gates secured at all times to prevent unauthorised access.

The Contractor must provide wheel washing and road sweeping facilities to ensure that the roads are kept mud and debris free.

5.1 Construction Route

5.1.1 Vehicle Movements

All construction access to the lands to the north of 'the Terrace' will be via the signalised junction from the L-2968 and internal road network permitted by Cork County Council reference 17/5699 and An Bord Pleanála reference 300128-17. This will provide access to the area of the proposed development known as 'The Green'. As noted above, no works associated with the proposed development are to commence until this signalised junction is operational. This is illustrated in Figure 4 for Phases 1 and 2 and Figure 5 for Phase 3.

Construction access to the portion of the site where the 5 no. dwellings to the south of 'the Terrace' are proposed will be via a new entrance from 'the Terrace' while the works area for the proposed apartments will be accessed from Johnstown Close. In order to ensure that vehicles entering/ exiting the site associated with the proposed Apartment Block a banks man/ flag man will be stationed at the entrance to the site to safely direct traffic.

Materials will be delivered to the proposed site storage areas, offloaded within the site compound using a teleporter and there will be a temporary lay down area used for the duration of the offload. When delivery trucks leave the compound, the material can be delivered to the correct location within the site compound.

Following unloading at the site compounds to the north of 'the Terrace', the vehicle can then leave the site via the signalised junction from the L-2968 and internal road network permitted by Cork County Council reference 17/5699 and An Bord Pleanála reference 300128-17 at a safe speed ensuring there is no risk of incidents involving pedestrians or other road users. Vehicles leaving the site compound associated with the 5 no. dwelling houses to the south of 'the Terrace' using 'the Terrace' road (L-2970-38). Vehicular access to and from the proposed apartments will be provided from Johnstown Close (L-3004-31).

Similar practices shall be put in place for trucks removing excavated material / demolition waste from site. Provision for parking cars / vans etc. will be within a designated area within the site compounds.

Contractor's Traffic Management Plan 5.2

A Traffic Management Plan will be prepared by the contractor and agreed with Cork County Council's Transportation Department & An Garda Siochana, to mitigate any impact of construction on the surrounding road network. The Contractor must propose a Construction Stage Traffic Management Plan in accordance with the following guidance documents for the temporary control of traffic at road works:

- Traffic Signs Manual Chapter 8 Temporary Traffic Measures and Sign Roadworks (2019); ٠
- Traffic Management Guidelines, Department of Transport (2003); ٠
- Requirements of Cork County Council. •

The Traffic Management Plan will provide for the following:

- 1. The contractor will be responsible for and make good any damage to existing roads or footpaths caused by his own contractor's or suppliers transport to and from the site.
- 2. The contractor must at all times keep all public and private roads, footpaths entirely free of excavated materials, debris, rubbish, provide vehicle wheel wash and thoroughly clean all wheels and arches of all vehicles as they leave the site.
- The contractor must confine his activities to the area of the site occupied by the works 3. and the builders' compound during any particular phase of the development.
- 4. Haul routes to and from the site will be defined and agreed with the Local Authority.
- Properly designed and designated entrance and egress points to the construction site for 5. construction traffic will be used to minimize impact on external traffic.
- 6. Where traffic signals are not in place, flagmen must be used to control the exit of construction vehicles from the site onto the public road.
- 7. Existing fire hydrants are to remain accessible for the duration of the works.

Due regard will be paid to minimising any impacts by construction vehicles on the surrounding area. Particular emphasis will be on the following:

- Construction and delivery vehicles must be instructed to use only the approved and • agreed means of access; and movement of construction vehicles must be restricted to these designated routes;
- Warning signs / Advanced warning signs are to be installed at appropriate locations in • advance of the construction access locations:
- Speed limits of construction vehicles are to be managed by appropriate signage, to • promote low vehicular speeds within the site;
- Appropriate vehicles are to be used to minimise environmental impacts from transporting ٠ construction material, for example the use of dust covers on trucks carrying dust producing material;
- Parking of site vehicles must be managed by the Contractor and must not be permitted • on public road:
- A road sweeper is to be employed to clean the public roads adjacent to the site of any • residual debris that may be deposited on the public roads leading away from the construction works:
- On site wheel washing will be undertaken for construction trucks and vehicles to prevent any debris prior to leaving the site, to remove any potential debris on the local roads;

- out off-site must not be carried out on the public highway; and
- for vulnerable users including mobility impaired persons.

5.3 Measures to Minimise Construction Vehicle Movements

Construction vehicle movements are to be minimised through:

- to occur outside of peak periods;
- Use of precast/prefabricated materials where possible:
- through various accommodation works;
- Adequate storage space on site will be provided; .
- public transport.
- used to reduce traffic numbers.
- site.

All vehicles are to be suitably serviced and maintained to avoid any leaks or spillage of oil, petrol, or diesel. Spill kits must be available on site. All scheduled maintenance carried

Safe and secure pedestrian facilities are to be provided where construction works obscure any existing pedestrian footways. Alternative pedestrian facilities must be provided in these instances, supported by physical barriers to segregate traffic and pedestrian movements, and to be identified by appropriate signage. Pedestrian facilities must cater

Consolidation of delivery loads to/from the site and scheduling of large deliveries to site

'Cut' material generated by the construction works is to be re-used on site where possible,

Construction staff vehicle movements will also be minimised by promoting the use of

Car sharing among the construction staff following Covid-19 safety guidelines may be

Public Transport: An information leaflet to all staff as part of their induction on site highlighting the location of the public transport services in the vicinity of the construction

Environmental Management 6.

The Contractor will be required to be accredited with ISO14001 Environmental Management Systems. The Contractor will be required to mitigate the impact of the construction works on the environment.

6.1 **Environmental Impact Assessment Report**

An Environmental Impact Assessment Report (EIAR) has been prepared as part of the planning application package. In addition to the various measures noted in this report, a series of impact mitigation measures have been set out in the EIAR. The Contractor must implement these measures. These measures are summarised in Chapter 15 of the EIAR.

A Natura Impact Statement (NIS) has been prepared as part of the planning application package. Potential Impact-receptor pathways are set out in Section 3 of the NIS. The mitigation measures set out in this document have been developed based on the potential Impact-receptor pathways identified.

Site Control Measures 6.2

The designated and operational on-site control measures, which will be established and maintained at this site, will include:

- Designated hard routes through the site, •
- Each departing vehicles to be checked by banksman,
- Wheel wash facility at egress point,
- Provision and facilities to cover lorry contents as necessary,
- Controlled loading of excavated material to minimise risk of spillage of contents,
- Spraying/ damping down of excavated material on site,
- Facility to clean roads if mud or spillage occurs.

6.3 Material Handling and Storage

Within the site compounds, a section within the area will be identified for material storage only. It is proposed that unloading bays are provided for deliveries to the site within the hoarding perimeter. They are to be accessible by forklifts. Appropriately demarcated storage zones will be used to separate and segregate materials.

Means to ensure that surface water run-off is controlled such that no silt or other pollutants enter local surface water sewers or drains are to be provided.

Spill Control Measures 6.4

It is not proposed to store any oils/fuels for the purpose of refuelling on the site.

Onsite plant will be refuelled by an external contractor who will call to site as required. Road vehicles are not be refuelled at the site. Minor spills and leaks may occur from road vehicles and the onsite excavator. Any oils or fuels onsite will be removed by an experienced and authorised contractor.

The following steps provide the procedure to be followed in the event of any significant spill or leak.

- Stop the source of the spill and raise the alarm to alert people working in the vicinity of ٠ any potential dangers.
- Eliminate any sources of ignition in the immediate vicinity of the incident ٠

Construction & Environmental Management

- not spread or flush away the spill.
- watercourses.
- Clean up as much as possible using the spill control materials. •
- is limited.
- ensure it has been contained adequately.
- The Employers Representative will inspect the site and ensure the necessary measures

6.5 **Foul Drainage**

Contractor welfare facilities will be provided within the Contractor's compound. As noted in Section 6.5 foul drainage will need to be taken to a vented holding tank for regular removal by suction tanker. A temporary potable water supply will be provided from Phase 1 of the wider development.

6.6 Surface Water Drainage

All watercourses must be protected from sedimentation and erosion throughout the duration of the Works.

Surface water management on site will comply with the following guidelines from CIRIA:

- Contractors,
- C741 Environmental Good Practice on Site 4th Edition.

Refer to Chapter 8 of the EIAR for additional measures which must be implemented for the duration of the works.

Run-off control measures to include the following:

- Dewatering measures will only be employed where there are no other alternatives. ٠
- include:
 - Dewatering by pumping to a soakaway.
 - parts of the site i.e., highly vulnerable groundwater areas.
- with an impervious surface.
- ٠ retained where possible to prevent causing increased flooding impacts.
- ٠ Authority/Irish Water and checked prior to commissioning.
- prevent any possibility of ingress of ground water.
- uncontrolled ground water inflow does not occur.

Contain the spill using the spill control materials, track mats or other suitable material. Do

Cover or bund off any vulnerable areas where appropriate such as drains or

Contain any used spill control material and dispose of used materials appropriately using a fully licensed waste contractor with the appropriate permits so that further contamination

Notify the Contractor immediately giving information on the location, type, and extent of the spill so that they can take appropriate action and further investigate the incident to

are in place to contain and clean up the spill and prevent further spillage from occurring.

C532 Control of Water Pollution from construction Sites, Guidance for Consultants and

For groundwater encountered during construction phase, mitigation measures will

Excluding contaminating materials such as fuels and hydrocarbons from sensitive

If concrete mixing is carried out on site, the mixing plant will be sited in a designated area

Existing surface drainage channels within the site that serve adjacent lands will be

Any surface water sewer connections will be made under the supervision of the Local

New onsite surface water drains will be tested and surveyed prior to commissioning to

All surface water manholes and drains will be inspected and sealed to ensure that

- Filters and silt traps will be used to prevent rain washing silts and other materials into the • surface water network and creating blockages.
- Areas surrounding the site are to be protected as necessary from sedimentation and • erosion due to direct surface water runoff generated onsite during construction phase. To prevent this from occurring surface water discharge from the site will be managed and controlled for the duration of the construction works, as noted in the points above, until the permanent surface water drainage system of the proposed site is complete.
- Regular inspections of de-watering settlement tanks, if used, are to be carried out and • additional treatment used if settlement is not adequate.
- Bunded areas will be created for the storage or use of any fuels, oils, greases, cement, . etc.
- Emergency spill kits will be kept close to the works. ٠

6.7 Water Supply

A water supply will be required for various activities on site. The Contractor will require a water source for the duration of the works. Water will be required for:

- Main contractor's welfare facilities. •
- Wheel wash and vehicle wash-down (use recycled water where feasible). .
- Dust suppression (as applicable). .
- Curing of concrete in warm weather. •
- General construction cleaning materials/equipment etc. ٠

A temporary potable water supply will be provided from Phase 1 of the wider development. There are existing public water mains to the north and south of the site, which could be used during the construction subject to Irish Water approval.

6.8 Noise & Vibration

The Contractor will comply with the Local Authority requirements with regard to the control of noise. Refer to Chapter 10 of the EIAR for additional measures which must be implemented for the duration of the works.

The Contractor will select and utilise methods of working and items of plant so that the maximum measured ground vibrations do not exceed the limits set out in Chapter 10 of the EIAR.

The Contractor will monitor ground vibrations at selected locations to the approval of the Employer's Representative during the progress of the works. The selected locations are to include the existing grotto structure at the southern end of the site.

Each vibrograph shall be certified as being in proper working order and shall unless otherwise approved, record vibrations in three directions simultaneously with print-out showing the amplitude and frequency of the vibrations.

The noise will comply with the following:

- BS 5228-1: 2009+A1:2014 Code of Practice for Noise Vibration Control on Construction and Open Sites: Noise;
- BS 5228-2: 2009 Code of Practice for Noise and Vibration control on Construction and Open Sites: Vibration;

Construction & Environmental Management

- specific requirements depending on the location of the site, and
- 371 (2006).

As per Chapter 10 of the EIAR, Table 6-1 sets out the maximum permissible noise levels at the facade of dwellings during construction.

Table 6-1. Maximum permissible noise levels at the facade of dwellings during construction

Assessment category and threshold value	Threshold value, in decibels (dB)		
period (L _{Aeq})	Category A	Category B	Category C
Night-time (11.00pm to 7.00am)	45	50	55
Evenings (7.00pm to 11.00pm weekdays). Weekends (1.00pm to 11.00pm Saturdays and 7.00am to 11.00pm Sundays)	55	60	65
Daytime (7.00am to 7.00pm) and Saturdays (7.00am to 1.00pm)	65	70	75

Any contradiction between this table and the planning application documents, the contractor is to work to the most onerous time/noise limits.

The limits outlined in above table may only be modified with the express written agreement of the Employer's Representative and the Local Authority.

Noise will be minimised, as far as practicable, by the selection of appropriate methods and equipment, and by the use of silencing devices wherever necessary. All compressors, percussion tools and vehicles will be fitted with effective silencers of a type recommended by their manufacturers. Measures shall be taken to minimise noise such turning off any machinery not in use.

Employees will not be permitted to use radios or other audio equipment in ways or at times which may cause nuisance and cause a Health and Safety risk.

The Contractor will carry out their works such that the effect of vibration on the surroundings is minimised and does not cause any damage. The Contractor is to refer to Section 10.3.2 (Assessment Criteria), 10.6.1 (Potential Impacts) and 10.7.1 (Mitigtion Measures) of Chapter 10 of the EIAR, this CEMP or tender / Contract documentation for further details of limits on vibration.

In the case of this development, vibration levels used for the purposes of evaluating building protection and human comfort are expressed in terms of Peak Particle Velocity (PPV) in mm/s.

BS 5228 and BS 7385 define the following thresholds for cosmetic damage to residential or light commercial buildings: PPV should be below 15 mm/s at 4 Hz to avoid cosmetic damage. This increases to 20 mm/s at 15 Hz and to 50 mm/s at 40 Hz and above. At frequencies below 4 Hz, a maximum displacement of 0.6 mm (zero to peak) is not to be exceeded. This is summarised in Table 6-2.

Environmental Protection Agency Act 1992 Sections 106-108, Local Authority's

Safety, Health and Welfare at Work (Control of Noise at Work) Regulations 2006 SI

Bluescape Limited Project number: 60592432

Table 6-2 Vibration Limits (PPV)

Type of building	Transient Vibration	Continuous Vibration
Reinforced or framed structures. Industrial and heavy commercial buildings	50 mm/s	25 mm/s
Unreinforced or light framed structures. Residential or light commercial-type buildings	15 mm/s	7.5 mm/s
Protected and Historic Buildings Note 1	6 mm/s – 15 mm/s	3 mm/s – 7 mm/s
Identified Potentially Vulnerable Structures and Buildings with Low Vibration Threshold	3 mm	ı/s

The relevant threshold value to be determined on a case by case basis. Where sufficient Note 1: structural information is unavailable at the time of assessment, the lower values within the range will be used, depending on the specific vibration frequency.

Furthermore, BS 5228-2 and BS 7385 state that minor structural damage can occur at vibration magnitudes greater than twice those in Table 6-2 and major structural damage can occur at vibration magnitudes greater than four times those in Table 6-2.

BS 5228-2 also provides guidance relating to the human response to vibration. Guidance is again provided in terms of PPV in mm/s since this parameter is routinely measured when monitoring the structural effects of vibration. The potential human response at different vibration levels, as set out in BS 5228-2, is summarised in Table 10.3.

Table 6-3 Guidance on human response to vibration levels

Vibration Level Note A) B) C) (mm/s)	Effect
0.14	Vibration might be just perceptible in the most sensitive situations for most vibration frequencies associated with construction. At lower frequencies, people are less sensitive to vibration.
0.3	Vibration might be just perceptible in residential environments.
1.0	It is likely that vibration of this level in residential environments will cause complaint, but can be tolerated if prior warning and explanation has been given to residents.
10	Vibration is likely to be intolerable for any more than a very brief exposure to this level in most building environments.

A) The magnitudes of the values presented apply to a measurement position that is representative of the point of entry into the recipient.

- B) A transfer function (which relates an external level to an internal level) needs to be applied if only external measurements are available.
- C) Single or infrequent occurrences of these levels do not necessarily correspond to the stated effect in every case. The values are provided to give an initial indication of potential effects, and where these values are routinely measured or expected then an assessment in accordance with BS 6472-1 or -2, and/or other available guidance, might be appropriate to determine whether the time varying exposure is likely to give rise to any degree of adverse comment.

In the absence of more onerous values, the limits set out in Table 6-2 will apply. These values will only be modified with the express written agreement of the Employer's Representative.

6.9 **Dust & Air Quality**

The Contractor's proposals must include dust control measures in accordance with best practice and with reference to the following:

The EIAR, in particular Chapter 12 of the EIAR, accompanying this application,

Construction & Environmental Management

- Air Pollution Act 1987.
- BS 6187: Code of Practice for Demolition.

In order to ensure that adverse air quality impacts are minimised during the construction phase and that the potential for soiling of property and amenity and local public roads is minimised, the following mitigation measures shall be implemented during the course of all construction activities:

- to minimise the generation of airborne dust.
- Use of rubble chutes and receptor skips during construction activities. ٠
- During dry periods, dust emissions from heavily trafficked locations (on and off site) will . be controlled by spraying surfaces with water and wetting agents.
- Hard surface roads will be swept to remove mud and aggregate materials from their • surface while any un-surfaced roads will be restricted to essential site traffic only.
- Re-suspension in the air of spillages material from trucks entering or leaving the site will • be prevented by limiting the speed of vehicles within the site to 10kmh and by use of a mechanical road sweeper.
- The overloading of tipper trucks exiting the site shall not be permitted. •
- Aggregates will be transported to and from the site in covered trucks.
- Where the likelihood of windblown fugitive dust emissions is high and during dry weather • conditions, dusty site surfaces will be sprayed by a mobile tanker bowser.
- Wetting agents shall be utilised to provide a more effective surface wetting procedure. •
- Exhaust emissions from vehicles operating within the construction site, including trucks, • excavators, diesel generators or other plant equipment, will be controlled by the contractor by ensuring that emissions from vehicles are minimised by routine servicing of vehicles and plant, rather than just following breakdowns; the positioning of exhausts at a height to ensure adequate local dispersal of emissions, the avoidance of engines running unnecessarily and the use of low emission fuels.
- All plant not in operation shall be turned off and idling engines shall not be permitted for • excessive periods.
- Material handling systems and site stockpiling of materials will be designed and laid out ٠ to minimise exposure to wind. Water misting or sprays will be used as required if particularly dusty activities are necessary during dry or windy periods.
- Material stockpiles containing fine or dusty elements including top soils shall be covered ٠ with tarpaulins.
- Where drilling or pavement cutting, grinding or similar types of stone finishing operations • are taking place, measures to control dust emissions will be used to prevent unnecessary dust emissions by the erection of wind breaks or barriers. All concrete cutting equipment shall be fitted with a water dampening system.
- A programme of air quality monitoring shall be implemented at the site boundaries for the ٠ duration of construction phase activities to ensure that the air quality standards relating to dust deposition and PM10 are not exceeded. Where levels exceed specified air quality limit values, dust generating activities shall immediately cease and alternative working methods shall be implemented.
- A complaints log shall be maintained by the construction site manager and in the event of a complaint relating to dust nuisance, an investigation shall be initiated.
- Dust netting and site hoarding shall be installed along the north, south, east, and western • site boundaries to minimise fugitive windblown dust emissions falling on third party lands and existing residential areas.

The Contactor will put in place a Dust Management Plan as set out in Chapter 12 (Appendix 12.2) of the EIAR.

Avoid unnecessary vehicle movements and manoeuvring, and limit speeds on site so as

The key aspects of controlling dust are listed below.

- Drop heights from conveyors, loading shovels, hoppers and other loading equipment will • be minimised, if necessary fine water sprays will be employed.
- Hard surface roads will be swept to remove mud and aggregate materials from their • surface while any unsurfaced roads will be restricted to essential site traffic.
- Any road that has the potential to give rise to fugitive dust must be regularly watered, as appropriate, during dry and/or windy conditions.
- When conditions are such that there is a risk of trackout of dust (i.e., very dry, or muddy), • vehicles exiting the site shall make use of a wheel wash facility prior to entering onto public roads.
- Vehicles using site roads will have their speed restricted through speed limit implementation, and this speed restriction will be enforced rigidly. On any site roads, this will be 20 kmph.
- Public roads outside the site will be regularly inspected for cleanliness and cleaned as ٠ necessary.
- Material handling systems and site stockpiling of materials will be designed and laid out • to minimise exposure to wind. Water misting or sprays will be used as required if particularly dusty activities are necessary during dry or windy periods.
- During movement of materials both on and off-site, trucks will be stringently covered with tarpaulin at all times. Before entrance onto public roads, trucks will be adequately inspected to ensure no potential for dust emissions.

At all times, these procedures will be strictly monitored and assessed. In the event of dust nuisance occurring outside the site boundary, movements of materials likely to raise dust and other dust generating activities will be curtailed and satisfactory procedures implemented to rectify the problem before the resumption of construction operations.

Full details of the dust management plan can be found in Appendix 12.3 (Volume III) of Chapter 12 of the EIAR.

The dust management plan will include a regime for monitoring dust levels in the vicinity of the site during the works using the Bergerhoff Method. The Bergerhoff Gauge consists of a collecting vessel and a stand with a protecting gauge. The collecting vessel is secured to the stand with the opening of the collecting vessel located approximately 2m above ground level. Then minimum criteria to be maintained shall be the limit specified by the Environmental Protection Agency (EPA) for licensed facilities in Ireland which is 350mg/m2/day as a 30- day average.

Fire and Explosion 6.10

The Contractor will take precautions to prevent the risk of fire or explosion caused by gas or vapour. Suitable portable fire extinguishers shall be kept at all times in working areas and areas not protected by other fire services.

Containers of flammable liquids or gases shall be handled in accordance with the recommendations of the Fire Services Department, Local Authority and Statutory Regulations.

Disposal of Materials 6.11

Where material is to be stockpiled on site prior to disposal, the contractor will control all runoff to prevent contamination of surrounding watercourses. Any surplus material will be removed off site to a licenced facility. Contaminated soil will be assessed to determine its constituents and disposed of offsite in accordance with Irish Waste Management Legislation.

Where site won topsoil is to be reused on site for planting / landscaping it will be appropriately stored and approved for use by the Employer's Representative prior to spreading in the required locations. Stockpiles must be no higher than 2m and the exposed surface must be seeded out.

6.12 Communication

The types of relevant communication and training required to ensure that the Contractor will take responsible steps to ensure waste and environmental duty of care is complied with and that materials are handled efficiently, and waste is managed appropriately:

- Construction Management Plan, ٠
- Site Waste and Environmental Management Plan, .
- Roles and responsibilities, ٠
- Toolbox talks,
- Waste procedures on site,
- Duty of care / responsibilities
- Material storage. •

Waste and environmental management will be included on the Agenda for all site meetings and monitoring statistics will be provided for review.

6.13 Sustainability

The Contractor shall undertake an embodied carbon footprint assessment of the Works in accordance with international best practice / standards. The scope of the assessment shall as a minimum include cradle / source to site and construction activity related emissions. Product type-specific Environmental Product Declarations (in accordance with I.S. EN15804), where these are available, can be consulted to assist in developing embodied carbon footprints of construction products.

Monitoring & Protection of Neighbouring Properties 7.

A monitoring regime will be put in place to protect neighbours & neighbouring properties with a full and detailed vibration, noise, dust, and groundwater monitoring regime put in place for the duration of the works.

Flowchart for the Instrumentation and Monitoring Subcontractor (MSC)

7.1 Monitoring Works Specialist

The Contractor will appoint a competent person to be referred to as the Surveying, Instrumentation and Monitoring Subcontractor (MSC) and together with them will prepare and maintain the vibration, noise, dust, and groundwater monitoring plan, for the agreement/approval of the Client, Employers Representative, and the Technical Advisors.

7.2 **Condition Schedules**

The MSC will be responsible for preparing or organising the preparation of condition surveys of surrounding buildings, walls, hardstanding area etc. prior to the carrying out of any works on site. Extent of surveys to be agreed. The condition surveys shall be carried out to a level of detail, suitable to the nature and extent of conditions encountered in order to obtain an understanding of the general structural condition of the property/structure and/or external environments.

Movement & Vibration 7.3

Monitoring Movement & vibration monitoring of adjoining areas are not deemed to be required given the nature of the works and the site location.

7.4 Noise & Dust Monitoring / Control

Refer to Sections 6.8 and 6.9 of this report, and Chapters 10 and 12 of the EIAR for details.

7.5 Recording

The MSC will monitor, collate, and report on noise & dust in report format, on a monthly basis, increased to weekly during critical activities.

Appendix A IAPS Management Plans

INVASIVE ALIEN PLANT SPECIES : SITE ASSESSMENT REPORT & MANAGEMENT PLAN

RESIDENTIAL DEVELOPMENT LANDS AT LACKENROE, GLOUNTHAUNE, CO. CORK

FOR

BLUESCAPE LIMITED

EXECUTIVE SUMMARY

SITE ASSESSMENT REPORT
SECTION 1 : INTRODUCTION
SECTION 2 : LEGESLATIVE CONTEXT
SECTION 3 : CLIENT & SITE DETAILS
SECTION 4 : SITE LOCATION MAP & AERIAL SITE LAYOUT
SECTION 5 : SCOPE OF SITE SURVEY
SECTION 6 : BACKGROUND RESEARCH
SECTION 7 : I.A.P.S. OVERALL INFESTATION DETAILS
SECTION 8 : I.A.P.S. DISTRIBUTION MAPS
SECTION 9 : I.A.P.S. INDIVIDUAL INFESTATION DETAILS
SECTION 10 : I.A.P.S. ENVIRONMENTAL INPACT & LOCAL SENS
SECTION 11 : I.A.P.S. PHOTOGRAPHS
SECTION 13 : CONCLUSIONS & RECOMMENDATIONS

I.A.P.S. MANAGEMENT PLAN

SECTION 13 : KNOTWEEDS - PROCESS OF TREATMENT SELECTION
SECTION 14 : KNOTWEEDS - MANAGEMENT PLAN
SECTION 15 : THREE CORNERED GARLC & SPANISH BLUEBELL M
SECTION 16 : RHODODENDRON MANAGEMENT PLAN
SECTION 17 : AMERICAN SKUNK CABBAGE MANAGEMENT PLAN
SECTION 18 : I.A.P.S TREATMENT PROGRAMME
SECTION 19: I.A.P.S ADDITIONAL CONSTRUCTION STAGE I.A.F

APPENDICES

APPENDIX 1: BOHEMIAN KNOTWEED I.D. SHEET
APPENDIX 2: HIMALAYAN KNOTWEED I.D. SHEET
APPENDIX 3: THREE CORNERED GARLIC I.D. SHEET
APPENDIX 4: SPANISH BLUEBELL I.D. SHEET
APPENDIX 5: RHODODENDRON I.D. SHEET
APPENDIX 6: AMERICAN SKUNK CABBAGE I.D. SHEET
APPENDIX 7: SAMPLE SITE SIGNAGE

APPENDIX 8: SAMPLE SITE FENCING

DOCUMENT NAME	STATUS	REV	DATE	COMMENT	AUTHOR	CKD.
CO-03-21/SARMP/00	DRAFT	00	04/06/2021	ISSUED FOR COMMENTS	KYRAN COLGAN	K.C.
CO-03-21/SARMP/01	ISSUE 1	01	03/09/2021	GENERAL REVISIONS	KYRAN COLGAN	K.C.
CO-03-21/SARMP/02	ISSUE 2	02	16/09/2021	FINAL REVISIONS	KYRAN COLGAN	K.C.

© Copyright 2021 Invasive Plant Solutions

The concepts and information contained in this document are the property of Invasive Plant Solutions. Use or copying of this document in whole or in part without the written permission of Invasive Plant Solutions constitutes an infringement of copyright.

	1
	2
,	2
TIVITIES	11
	12
	30
	31
)N	
	32
IANAGEMENT PLAN	33
	33
N	34
	34
P.S. MANAGEMENT MEASURES	35
	36
	36
	38
	40
	43
	56

I.A.P.S. SITE ASSESSMENT REPORT & MANAGEMENT PLAN

RESIDENTIAL DEVELOPMENT LANDS, GLOUNTHAUNE, CO. CORK										
PROJECT NO. CO-03-21 GPS POSITION : ITM X 577195 Y 573892 AUTHOR MR. KYRAN COLGAN										

EXECUTIVE SUMMARY

Invasive Plant Solutions have been retained by Bluescape Limited, to provide IAPS (invasive alien plant species) consultancy services in relation to a land holding in the townland of Lackenroe, Glounthaune, Co. Cork. The majority of the land holding is currently in agricultural use, but with the most southerly part of the holding comprising of a mix of woodland habitat and unoccupied residential use.

Proposals are being considered in relation to the future development of the lands, which currently envisage an integrated mixed residential scheme occupying the main body of the lands, with secondary development and pedestrian connections to Glounthaune village provided via routes through the woodland zone occupying the southern sector of the land holding. These proposals have been developed to a stage whereby Statutory Consents can be sought in the near future, but the outcome of such a process, and specific timelines for any future development, are currently unknown.

This IAPS Site Assessment Report and Management Plan represents the first stage of an ongoing programme of IAPS consultancy services, the scope of which is designed and intended to deliver the safe, bio-secure and comprehensive management of all identified invasive alien plant species. The evolving Management Plan will include any necessary remediation measures that may be required to satisfy this purpose, in circumstances where the land is approved for development.

An initial I.A.P.S. survey was carried out on the 24th. May 2021, which falls within the optimum window in 2021 for surveying for the presence of IAPS. The data and information contained in this document is therefore as up to date as is reasonably possible, and therefore forms a reliable basis for the implementation of a realistic and deliverable IAPS management programme.

The management plan has been developed with reference to The Management of Noxious Weeds and non-native Invasive Species on National Roads" by NRA (2010), Best Practice Management Guidelines by Invasive Species Ireland (2008) and the UK Environment Agency's The Knotweed Code of Practice : Managing Japanese Knotweed on Development Sites. In applying the latter's planning matrix, as well as the "precautionary principle", we can conclude that the IAPS management will initially consist of a combination of three specific measures, as follows :

- Deployment of initial bio-security measures, including fencing of certain infested zones and the fitting of warning / advisory signage
- Multi Annual in-situ herbicide control of certain IAPS infestations, particularly Knotweeds, Three Cornered Garlic and Spanish Bluebell
- On-site physical remediation of certain other IAPS infestations, particularly Rhododendron and American Skunk Cabbage

Based on the outcome of the project development process, including the planning approval and detailed design stages, assessed in conjunction with the overall phasing and timing of any construction works, and with ongoing site monitoring and treatment in the interim, this IAPS Management Plan will be developed and expanded upon. A "construction stage" document will further refine the IAPS management process and will set out the detailed bio-security requirements and individual remediation measures to be deployed at each IAPS location, during the delivery phase of any proposed development.

YRAN COLGAN Director

16 SEPTEMBER 2021

INVASIVE PLANT SOLUTIONS LIMITED The Stationho Station Road Dundrum Co. Tipperary E34 EK83

SECTION 1 : GENERAL INTRODUCTION

The Site Assessment Report has been prepared for the client / agency referenced in Section 2 below, and is for their sole and exclusive use. The report reflects the particular site circumstances and conditions, as they presented on the days of inspection. Depending on the time of year of the site assessment, particularly if carried out in advance of the annual IAPS growing season, the evidence of invasive plant species on site may be limited. In these circumstances follow up site inspections, later in the growing season, may be recommended. This will be included in Conclusions and Recommendations at Section 13 of the report.

By their nature, IAPS are aggressive interlopers in our native habitat, are capable of aggressive and rapid dominance, and if left untreated generally result in extensive habitat impairment. It is therefore reasonable to conclude that, where IAPS are identified, but control measures are not applied, these plant species will spread beyond their observed extents.

In addressing invasive alien plant species the precautionary principle should always be applied to their assessment, management and control. All recommended management and control measures should be carried out strictly in accordance with a Site Specific Management Plan, and follow "best practice" principles, as set out in technical reference documents such as the UK Environment Agency's The Knotweed Code of Practice, The Management of Noxious Weeds and non-native Invasive Species on National Roads" by NRA (2010), and Best Practice Management Guidelines by Invasive Species Ireland (2008)

Control measures should be implemented using a recognised professional service with expertise in this field of work, and take into account any and all sensitivities highlighted in the site assessment report. Particular care should be taken in circumstances where the invasive plant species are located within a designated site of ecological importance, such as an SAC, SPA or NHA, or are set within the context of known ecological sensitivities. Where the use of herbicides are proposed, these should be applied strictly in accordance with the manufacturers recommendations, by a registered Professional Pesticides User, and fully in compliance with the European Communities (Sustainable Use of Pesticides) Regulations, 2012, (S.I. 155 of 2012).

Under no circumstances should any IAPS be cut or dug out without the advice, direction and supervision of an invasive species specialist. Many plant species have extensive root / rhizome systems which spread beyond the footprint of the above ground plant, and some can regenerate themselves from very small fragments of root or stem. Some plants produce very substantial quantities of seeds, which remain viable for many years, while others produce a sap which causes severe skin damage & burns.

The off-site removal of Japanese knotweed, its variants, soil infested with knotweed material, and other IAPS, are all strictly controlled by legislation and require a licence from the National Parks and Wildlife Service in advance of their removal, in accordance with the European Communities (Birds and Natural Habitats) Regulations 2011 (SI 477).

SECTION 2 : LEGISLATIVE CONTEXT

Japanese Knotweed, Fallopia japonica, and other invasive plant species, are listed as Invasive Alien Plant Species in Part 1 of the Third Schedule of the European Communities (Birds and Natural Habitats) Regulations 2011 (SI 477 of 2011, as amended). In addition, soils and other material containing Knotweeds are classified in Part 3 of the Third Schedule as vector materials and are subject to the same strict legal controls. Failure to comply with the legal requirements set down can result in either civil or criminal prosecution, with very severe penalties accruing. A person who commits an offence under Regulations 49 & 50 is liable (a) on summary conviction, to a Class A fine or imprisonment for a term not exceeding six months, or both, or (b) on conviction on indictment, to a fine not exceeding €500,000, or imprisonment for a term not exceeding three years, or both. A person who knowingly incites, directs, procures, permits or assists another person to carry out an action that is an offence under these Regulations shall also be guilty of an offence. The relevant sections of the regulations are reproduced below.

- 49(2) causes to disperse, spreads or otherwise causes to grow in any place [a restricted non-native plant], shall be guilty of an offence.
- 49(3) exercised all due diligence to avoid committing the offence.
- 50(1) introduction or release-
 - (a) [any restricted non-native animal or plant species].
 - (b) anything from which an animal or plant referred to in subparagraph (a) can be reproduced or propagated, or
 - hybrids..

It is an offence under regulations 49(2) and 50(1) to spread, or cause to spread, Japanese Knotweed and other IAPS. An offence may only be avoided if the relevant party can prove that they took all reasonable steps to avoid causing an offence under the legislation. To comply with these regulations, therefore, this management plan relies solely on methodologies necessary to ensure strict compliance with the legislation.

I.A.P.S. SITE ASSESSMENT REPORT

Save in accordance with a licence granted [by the Department of Arts, Heritage and the Gaeltacht], any person who plants, disperses, allows or

... it shall be a defence to a charge of committing an offence under paragraph (1) or (2) to prove that the accused took all reasonable steps and

Save in accordance with a licence, a person shall be guilty of an offence if he or she [...] offers or exposes for sale, transportation, distribution,

(c) a vector material listed in the Third Schedule, [which includes] soil or spoil taken from places infested with Japanese Knotweed....and its

SECTION 3 : CLIENT & SITE DETAILS

GENERAL DETAILS															
	LACKENROE, GLOU		JNE, CO. CORK												
CLIENT DETAILS	12 MERRION SQUA					OWNE	RSHIP	PUBLIC PRIVATE							
	DUBLIN 2 IRELAND						CLIENT	REP.	MR. PAUL Mc. CARTHY						
						_	TEL / EMAIL 087 233 8991 / paul@westhilluk								
STATE AGENCIES INVOLVED	CO. COUNCIL		NPWS		IFI		IRISH \	NATER							
	ESB IRISH RAIL GNI OTHER														
CONSULTANTS / AGENTS	ARCHITECTS – DEADY GAHAN ARCHITECTS EASTGATE VILLAGE RETAIL PARK LITTLE ISLAND CO. CORK ECOLOGICAL CONSULTANTS – KELLEHER ECOLOGY SERVICES CASTLELYONS CO. CORK														
SITE USAGE	AGRICULTURAL	х	FORESTRY		RESIDE	ENTIAL	х	COM	MERCIAL		INDUSTRIAL				
	PUBLIC SPACE		GREENFIELD	х	BROW	NFIELD		01	THER						
SITE AREA	Lands outlined in R	ed : 12	2.69 Ha. + Lands	outlined	d in Blue	: 0.13 H	a. = Tota	al Site Ar	ea : 12.8	2 Ha.					
	EXTENDING FROM THE L3004 OLD YOUGHAL ROAD, ON THE EAST SIDE OF GLOUNTHAUNE VILLAGE, IN THE SOUTH, AND RUNNING UPHILL TO THE NORTH AND WEST. THE BULK OF THE LANDS ARE LAID OUT IN WELL ESTABLISHED FIELD DIVISIONS, ACCESSED VIA EXISTING AND PROPOSED ROADWAYS TO THE NORTH AND WEST. THE WESTERN ACCESS PIONT IS A FUTURE ROADWAY, TO BE BUILT AND ROUTED ACROSS EXISTING AGRICULTURAL LANDS, AND DELINIATED IN YELLOW ON THE MAP REPRODUCED BELOW. THE SOUTHERN PORTION OF THE LAND HOLDING CONSISTS OF TWO DISUSED RESIDENTIAL PROPERTIES ON INDIVIDUAL SITES, LOCATED ON THE NORTH SIDE OF "THE TERRACE" PUBLIC ROADWAY, AND A TRANCH OF MIXED NATIVE WOODLAND, EXTENDING FROM THE SOUTHERN SIDE OF "THE TERRACE" PUBLIC ROAD DOWNHILL TO THE SOUTHERN LIMITS OF THE OVERALL LAND HOLDING, ON THE PEDESTRIAN WALKWAY JUST NORTH OF THE L3004. A SMALL SECTION OF FORMER GARDENS PROVED TO BE INACCESSIBLE FOR THE PURPOSE OF THIS ASSESSMENT, AND IS ILLUSTRATED ON THE MAP BELOW. THE LAND HOLDING IS BOUNDED BY PRIVATE RESIDENTIAL AND COMMERCIAL PROPERTIES TO THE SOUTH, WEST, AND NORTH, AND BY A MIX OF AGRICULTURAL FIELDS AND PRIVATE RESIDENTIAL PROPERTIES TO THE EAST SITE BOUNDARIES ARE GENERALLY WELL DEFINED AND DEMARCATED, IN A COMBINATION OF STONE AND MASONRY WALLS, NATIVE HEDGES AND FENCING. THE LANDS ARE CURRENTLY BEING ASSESSED AND CONSIDERED FOR A POTENTIAL RESIDENTIAL DEVELOPMENT														
	OVERALL LAND HO GARDENS PROVED THE LAND HOLDIN NORTH, AND BY A SITE BOUNDARIES WALLS, NATIVE HE	THE S DLDING TO BE G IS B MIX OI ARE G DGES A	OUTHERN SIDE G, ON THE PEDE INACCESSIBLE FO OUNDED BY PRI F AGRICULTURAI SENERALLY WEL AND FENCING.	OF "THE STRIAN OR THE F VATE R . FIELDS . DEFIN	E TERRAC WALKW PURPOSE ESIDENTI AND PRI ED AND	CE" PUB AY JUST OF THIS AL AND VATE R DEMAR	LIC ROA NORTH SASSESS COMM ESIDENT	Y, AND A D DOWN I OF THE IMENT, A IERCIAL F TIAL PROI IN A CC	TRANCH NHILL TC E L3004. ND IS ILL PROPERT PERTIES OMBINAT	OF MIXE THE SOU A SMALL USTRATE TIES TO T TO THE E	D NATIVE WOOD JTHERN LIMITS (L SECTION OF FC D ON THE MAP B HE SOUTH, WES AST STONE AND MA	DLAND, DF THE DRMER ELOW. T, AND			

-3-

SECTION 4 : SITE LOCATION MAP & AERIAL SITE LAYOUT

SITE LOCATION MAP REPRODUCED COURTESY OF BING MAPS

AERIAL SITE LAYOUT

SITE LOCATION MAP

AERIAL SITE LAYOUT REPRODUCED COURTESY OF BING MAPS

SECTION 5 : SCOPE OF I.A.P.S. SURVEY

The scope and purpose of the I.A.P.S. Survey was to:

 Confirm presence, or otherwise, and extent of Japanese Knotweed and its hybrids within, or in close proximity to, the site forming the study area

-5-

- Confirm the presence, or otherwise, of any other I.A.P.S. within or in close proximity to, the site forming the study area
- Use the survey results to inform the preparation of an I.A.P.S. Site Assessment Report .
- Use the survey results to inform the preparation of an I.A.P.S. Management Plan, particularly in relation to any • necessary bio-security and control measures that may be required

SECTION 6 : BACKGROUND RESEARCH

A desktop study was carried out in May 2021, to identify any formal records that may exist for the presence of land based I.A.P.S., as set out in Part 1. Schedule 3. of S.I. 477 of 2011, within for the study area.

The National Biodiversity Data Centre (NBDC) invasive species database and mapping system were reviewed, covering the study area, the immediately surrounding lands, and the broader hinterland.

The search of the NBDC invasive alien plant species database yielded no records of the presence of land based I.A.P.S. within the survey area itself. However there are a number of IAPS records located in the broader hinterland, generally relating to the railway line which runs parallel, and to the south, of the L3004 Old Youghal Road, itself just south of the subject site. These records relate primarily for the presence of Japanese Knotweed, but also include a small number of records for Bohemian and Giant Knotweed plants. For reference, we have reproduced below the NBDC map record for the nearest Japanese Knotweed sites, as recorded between 2000 and 2021.

In addition we also referred to various open source mapping, satellite imaging, and data sets, including Land Direct, Geohive, NPWS Map Viewer, Google Maps and Bing Maps

MAPPING RECORDS OF JAPANESE KNOTWEED IN THE VICINITY OF THE SURVEY AREA, 2001-2021 MAP REPRODUCED COURTESY OF NATIONAL BIODIVERSITY DATA CENTRE

SECTION 7 : I.A.P.S. OVERALL INFESTATION DETAILS

INVASIVE ALIEN SPECIES							
JAPANESE KNOTWEED		GIANT KNOTWEED		BOHEMIAN KNOTWEED	х	HIMALAYAN KNOTWEED	х
GUNNERA		HIMALAYAN BALSAM		GIANT HOGWEED		RHODODENDRON	х
AMERICAN SKUNK CABBAGE	Х	THREE CORNERED GARLIC	х	SPANISH BLUEBELL	х	HOTTENTOT FIG	

DESCRIPTION & EXTENT OF KNOTWEED COLONISATIONS

BOHEMIAN KNOTWEED - BK 1

BK 1 IS A STAND OF HEALTHY, EMERGING, BOHEMIAN KNOTWEED WITHIN THE WOODLAND ZONE FORMING THE SOUTHERN SECTOR OF THE LANDS. THE STAND IS LOCATED JUST NORTH AND WEST OF SUNKEN STONE STRUCTURE, CLOSE TO A RECENTLY FORMED ACCESS ROUTE THROUGH THE WOODLAND TO THE LOWEST SECTION OF THE SITE. THE BOHEMIAN KNOTWEED IS ALMOST FULLY EMERGED FOR THIS GROWING SEASON, WITH STEMS UP TO 1.5M -2M IN HEIGHT, AND WITH SMALLER STEMS PRESENTING AROUND THE PERIPHERY OF THE STAND. THERE IS NO EVIDENCE OF DEAD CANES FROM PREVIOUS SEASONS GROWTH, SUGGESTING THAT THE STAND COULD BE PART OF A PREVIOUSLY DORMANT INFESTATION, OR POSSIBLY GROWTH FROM RHIZOME THAT WAS PREVIOUSLY INTRODUCED ONTO THE SITE IN SPOIL MATERIAL, AND WHICH WAS ACTIVATED BY THE RECENT SITE CLEARANCE ACTIVITIES

BOHEMIAN KNOTWEED - BK 2

JK 2 IS A STAND OF BOHEMIAN KNOTWEED LOCATED APPROX. 12M TO THE EAST OF BK 1, AND IS EXHIBITING SIMILAR CONDITIONS AND CHARACTERISTICS. IT IS POSSIBLE THAT THE TWO STANDS ARE CONNECTED GROWTH ORIGINATING FROM THE SAME REPOSITORY OF RHIZOME MATERIAL CONTAINED WITHIN THE GROUND IN THIS GENERAL AREA. FURTHER INVESTIGATION IS REQUIRED TO DETERMINE THE PRECISE CIRCUMSTANCES OF THE TWO STANDS

HIMALAYAN KNOTWEED - HK 1

HK 1 IS A LARGE MONOLITHIC STAND OF RECENTLY EMERGENT HIMILAYAN KNOTWEED LOCATED IN THE SAME SOUTHERN SECTOR, NORTH OF BK 1. THE STAND IS PARTIALLY ON THE RECENTLY FORMED ACCESS TRACK, BUT WITH THE MAIN BODY OF THE STAND EXTENDING TO THE WEST, UP THE SLOPING BANK IN OPEN GROUND. AS WITH THE OTHER STANDS, THERE IS NO EVIDENCE OF DEAD STEMS FROM PREVIOUS SEASONS GROWTH.

HIMALAYAN KNOTWEED - HK 2

HK 2 COMPRISES A SERIES OF JUVENILE AND IMMATURE HIMALAYAN KNOTWEED SHOOTS, IMMEDIATELY NORTH, AND TO THE WEST, OF BK 2, SCATTERED ACROSS THE RECENTLY DISTURBED OPEN GROUND. IT IS EARLY IN THE GROWING SEASON, SO ITS FULL EXTENT MAY NOT YET BE FULLY REPRESENTED.

DESCRIPTION & EXTENT OF OTHER I.A.P.S. COLONISATIONS

THREE CORNERED GARLIC - TCG 1 & TCG 3

TCG 1 & TCG 3 ARE LINEAR STANDS OF WELL ESTABLISHED THREE CORNERED GARLIC, SPREADING WITHIN AND ALONG ROADSIDE VERGES

THREE CORNERED GARLIC - TCG 2

TCG 2 IS A SMALL STAND OF THREE CORNERED GARLIC. LOCATED WITHIN THE NATIVE HEDGEROW SEPARATING FIELDS IN THE NORTHERN SITE SECTOR

THREE CORNERED GARLIC - TCG 4, TCG 5, TCG 6 & TCG 7

TCG 4 - TCG 7 ARE A SERIES OF STANDS OF WELL ESTABLISHED THREE CORNERED GARLIC, SPREADING WITHIN THE NORTHERN PART OF THE WOODLAND THAT FORMS THE SOUTHERN SITE SECTOR, AND ALONG BOTH SIDES OF THE PEDESTRIAN RIGHT OF WAY ON THE WOODLAND'S EASTERN FRINGE

SPANISH BLUEBELL - SB 1

SB 1 IS A SMALL GROUP OF SPANISH BLUEBELL PLANTS SCATTERED THROUGH NATIVE VEGETATION. LOCATED IN THE RECENTLY FORMED CLEARANCE IN THE NORTHERN SECTOR OF THE WOODLAND, WHICH FORMS THE SOUTHERN SECTOR OF THE LAND HOLDING

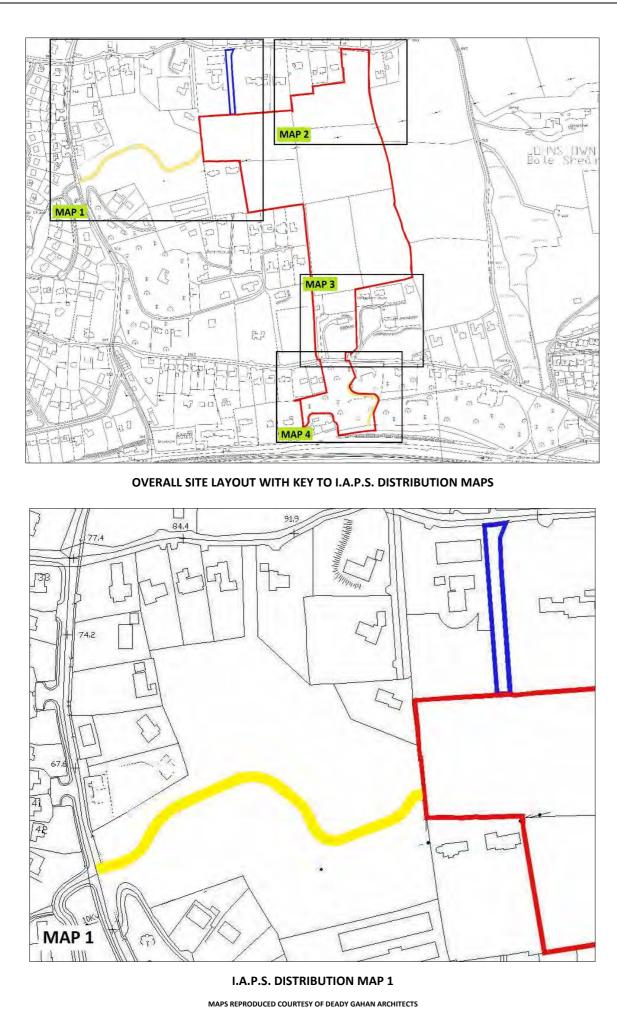
THREE CORNERED GARLIC & SPANISH BLUEBELL - TCG/SB 1, TCG/SB 2 & TCG/SB 3

TCG/SB 1, TCG/SB 2 & TCG/SB 3 ARE EXTENSIVE ZONES OF MIXED INFESTATIONS OF BOTH THREE CORNERED GARLIC AND SPANISH BLUEBELL, LOCATED ON THE GROUNDS OF THE TWO RESIDENTIAL PROPERTIES ON THE NORTH SIDE OF "THE TERRACE" PUBLIC ROAD. THE STANDS ARE TYPICALLY WELL ESTABLISHED AND ARE MIXED AND SPREADING AMONGST NATIVE VEGETATION. THERE IS EVIDENCE OF SOME SPERAD INTO THE FIELDS TO THE NORTH

THREE CORNERED GARLIC & SPANISH BLUEBELL - TCG/SB 4, TCG/SB 5 & TCG/SB 6

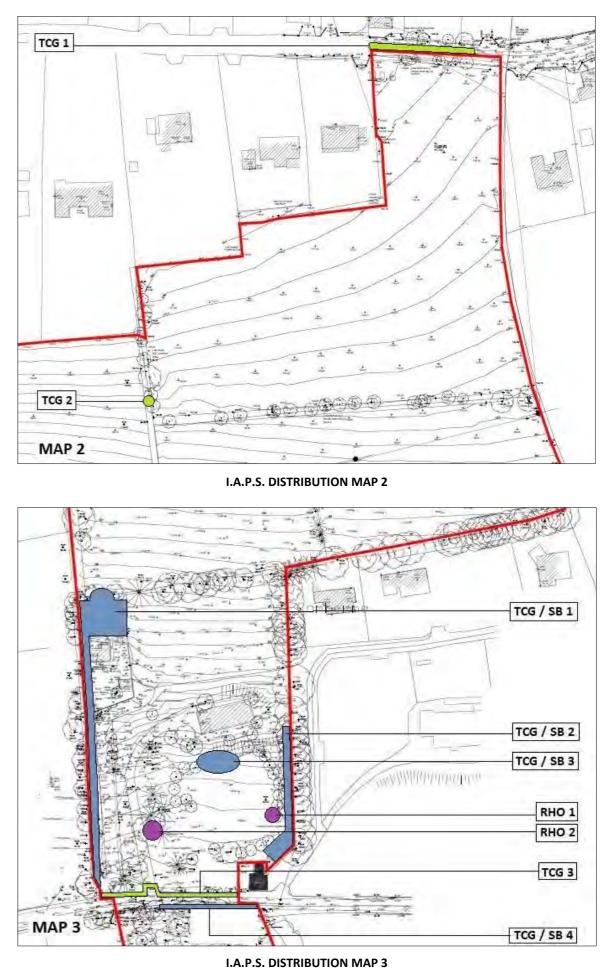
TCG/SB 4, TCG/SB 5 & TCG/SB 6 ARE A SERIES OF MIXED STANDS OF WELL ESTABLISHED THREE CORNERED GARLIC AND SPANISH BLUEBELL, SPREADING WITHIN THE WOODLAND THAT FORMS THE SOUTHERN SITE SECTOR, PARTICULARLY ALONG THE ROADSIDE MARGIN ON ITS NORTHERN FRINGE AND ALONG BOTH SIDES OF THE PEDESTRIAN RIGHT OF WAY ON THE WOODLAND'S SOUTH EASTERN MARGINS

RHODODENDRON - RHO 1 & RHO 2


RHO 1 & RHO 2 ARE TWO HEALTH AND MATURE RHODODENDRON TREES, LOCATED IN THE GROUNDS OF THE LARGE DISUSED RESIDENTIAL PROPERTY, ON THE NORTH SIDE OF "THE TERRACE" PUBLIC ROAD. RHO 1 IS LOCATED CLOSE TO SOUTHERN END OF THE PROPERTY'S EASTERN BOUNDARY, WHILE RHO 2 IS IN THE WESTERN SECTOR OF THE PROPERTY, IN LINE WITH THE ENTRANCE POINT TO THE SITE. THE TWO TREES ARE CURRENTLY IN FLOWER.

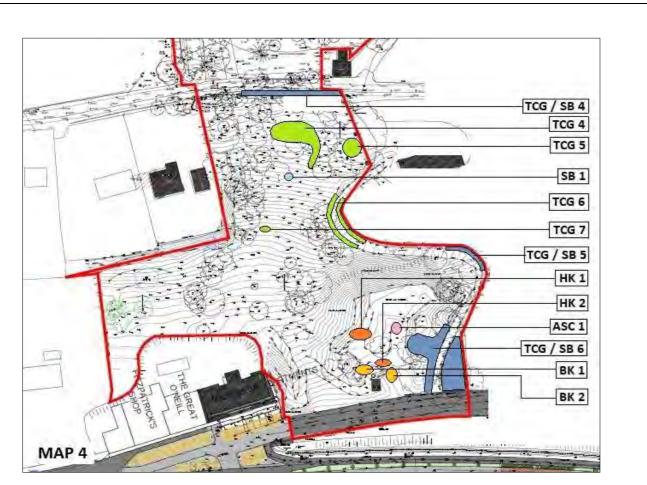
AMERICAN SKUNK CABBAGE - ASC 1

ASC 1 REPRESENTS AN AREA OF AMERICAN SKUNK CABBAGE, COMPRISING APPROX 10 PLANTS, AT VARYING STAGES OF PLANT GROWTH. THEY ARE LOCATED IN A LOW LYING WET GROUND, WITHIN THE SOUTHERN SITE SECTOR, APPROX 20M NORTH OF THE BOEMENIAN KNOTWEED STANDS


CONDITION OF INFESTATIONS											
GROWTH STAGE	EMERGENT		х	REGR	OWTH		JU/	/ENILE / SEMI MATURE	х	MATURE	х
CONDITION	HEALTHY		х	DISTR	RESSED		STUN	TED		BONSAI	
RISKS FROM PLANTS											
BOUNDARIES	х	SOFT LANDSCA	PE	х	HARD SURFAC	ES		SITE DISPERSAL	х	SENSITIVE HABITATS	х

SECTION 8 : I.A.P.S. DISTRIBUTION MAPS

-7-


SECTION 8 : I.A.P.S. DISTRIBUTION MAPS - CONTD.

MAPS REPRODUCED COURTESY OF DEADY GAHAN ARCHITECTS

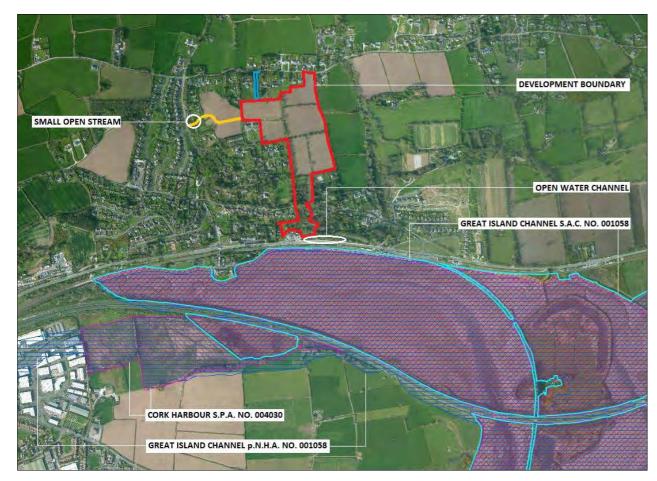
SECTION 8 : I.A.P.S. DISTRIBUTION MAPS - CONTD.

-9-

I.A.P.S. DISTRIBUTION MAP 4

MAPS REPRODUCED COURTESY OF DEADY GAHAN ARCHITECTS

SECTION 9 : I.A.P.S. INDIVIDUAL INFESTATION DETAILS


DETAILS	NO.	ITM – X *	ITM – Y *	SIZE (M X M)	COMMENTS
DETAILS	NO.			312E (IVI X IVI)	
INFESTATION 1	BK 1	577279	573379	+/- 5m dia.	Emergent, distressed stems on periphery
INFESTATION 2	BK 2	577290	573375	+/- 4m x 3m	Emergent, distressed stems on periphery
INFESTATION 3	HK 1	577279	573397	+/- 10m x 6m	Emergent, section on trackway disturbed
INFESTATION 4	HK 2	577286	573380	+/- 4m x 3m	Just emerging, in disturbed ground
INFESTATION 5	TCG 1	577253 to 577302	574098 to 574102	+/- 50m x 1m	On roadside margin, on south side of public Road
INFESTATION 6	TCG 2	577155	573962	+/- 2m dia.	Within hedgerow at crossing point between fields
INFESTATION 7	TCG 3	577209 to 577263	573500 to 573503	+/- 55m x 5m	On roadside margin and spreading into the main property entrance, on north side of public road
INFESTATION 8	TCG 4	577259	573475	+/- 5m x 12m	In woodland clearing, spreading south
INFESTATION 9	TCG 5	577277	573467	+/- 7m x 5m	Under large tree in woodland, spreading south
INFESTATION 10	TCG 6	577276 to 577283	573412 to 573431	+/- 18m x 1m x 2	Both side of pathway, around right hand bend
INFESTATION 11	TCG 7	577236	573439	+/- 2m x 1m	In woodland clearing
INFESTATION 12	SB 1	577256	573456	+/- 3m dia.	In woodland clearing
INFESTATION 13	TCG/SB 1	577205 to 577209	573503 to 573625	+/- 100m x 1m x 2 + +/- 16m x 20m	Both sides of driveway and in open ground behind house, spreading into the field to the north
INFESTATION 14	TCG/SB 2	577274 to 577281	573512 to 573569	+/- 60m x 5 - 10m	
INFESTATION 15	TCG/SB 3	577254	573556	+/- 6m x 3m	Spreading through vegetation at woodland fringe
INFESTATION 16	TCG/SB 4	577232 to 577270	573490 to 573491		On roadside margin, on south side of public Road
INFESTATION 17	TCG/SB 5	577324	573426	+/- 15m x 2m	Both side of pathway, around left hand bend
INFESTATION 18	TCG/SB 6	577313 to 577315	573369 to 583396	+/- 8m x 20m	
INFESTATION 19	RHO 1	577275	573533	+/- 4m dia.	Currently in full flower
INFESTATION 20	RHO 2	577222	573531	+/- 6m dia.	Currently in full flower
INFESTATION 21	ASC 1	577301	573402	+/- 3m x 2m	

* Many of the invasive alien plant species recorded are located within woodland or close to dense canopy cover. Therefore some of the GIS co-ordinates could have a significant margin of error, which should be taken consideration when implementing IAPS management measures. Their exact location and extent should be validated on the ground, and clearly demarcated, using an invasive alien plant species specialist.

SECTION 10 : I.A.P.S. - ENVIRONMENTAL IMPACT AND LOCAL SENSITIVITIES

VISUAL IMPACT	MINIMAL		MODERATE	х	SIGNIFICANT		SEVE	RE	
ENVIRONMENTAL IMPACT	LIMITED		MODERATE		SIGNIFICANT	х	SEVE	RE	
TRANSLOCATION RISK	LOW		MEDIUM		HIGH	х	ACUT	E	
PROXIMITY TO WATER BODY	DISTANT		VICINITY	х	ADJOINING		WITH	IN	
NATURE OF WATER BODY	RIVER		SEA	Х	LAKE		CHAN	NEL	Х
DESIGNATED STATUS									
IS SITE IN A DESIGNATED AREA	SAC	NO	SPA	NO	NHA / pNHA	NO	NO.	N/A	
DESIGNATED AREA NEARBY	SAC	YES	SPA	YES	NHA / pNHA	YES	NO.	001058/00	4030
OTHER SENSITIVITIES COMMENTS / NOTES	-	SIGNATE			ID CHANNEL S.A.C. N ANCE TO THE SOUTH				

MAPS / ILLUSTRATIONS

RELATIONSHIP BETWEEN THE SITE & THE CLOSEST DESIGNATED SITES MAPS REPRODUCED COURTESY OF THE N.P.W.S. MAPVIEWER FACILITY

SECTION 11 : SITE PHOTOGRAPHS

BOHEMIAN KNOTWEED – BK 1

VIEW OF STAND - LOOKING WEST

VIEW OF STAND - LOOKING NORTH

VIEW OF STAND - LOOKING SOUTH

VIEW OF STAND - LOOKING NORTH

SECTION 11 : SITE PHOTOGRAPHS – CONTD.

DETAIL OF HEALTHY PLANT STEMS AND LEAVES

DETAIL OF DELAYED OR DISTRESSED GROWTH

HIMILAYAN KNOTWEED – HK 1

VIEW OF STAND - LOOKING NORTH EAST

VIEW OF STAND - LOOKING NORTH WEST

SECTION 11 : SITE PHOTOGRAPHS – CONTD.

-15-

HIMILAYAN KNOTWEED – HK 1

VIEW OF EASTERN END OF THE STAND ON, AND CROSSED BY, A VEHICLE TRACK - LOOKING NORTH

CLOSE UP OF EMERGING NEW SEASON GROWTH

HEALTHY ENERGENT NEW SEASON GROWTH IN DISTURBED GROUND – LOOKING NORTH

DELAYED OR DISTRESSED NEW SEASON GROWTH IN DISTURBED GROUND - LOOKING WEST

SECTION 11 : SITE PHOTOGRAPHS – CONTD.

THREE CORNERED GARLIC – TCG 1

-18-

ROADSIDE MARGIN – LOOKING WEST

THREE CORNERED GARLIC MIXED AMONGST NATIVE VEGETATION IN ROADSIDE MARGIN

THREE CORNERED GARLIC MIXED AMONGST NATIVE VEGETATION IN HEDGEROW AT TCG 2

ROADSIDE MARGIN AT TCG 3 CONTAINING THREE CORNERED GARLIC - LOOKING WEST

THREE CORNERED GARLIC – TCG 4 & TCG 5

THREE CORNERED GARLIC MIXED AMONGST NATIVE VEGETATION IN WOODLAND CLEARING AT TCG 4

THREE CORNERED GARLIC AROUND THE BASE OF A TREE IN THE SOUTHERN WOODLAND AT TCG 5

THREE CORNERED GARLIC – TCG 2 & TCG 3

THREE CORNERED GARLIC – TCG 6 & TCG 7

THREE CORNERED GARLIC ON THE SIDE OF THE PATH ALONG THE EASTERN WOODLAND FRINGE AT TCG 6

THREE CORNERED GARLIC ON THE SIDE OF THE VEHICLE TRACK THROUGH THE SOUTHERN WOODLANDS AT TCG 7

SECTION 11 : SITE PHOTOGRAPHS – CONTD.

SPANISH BLUEBELL – SB 1

-22-

TYPICAL SPANISH BLUEBELL PLANTS IN THE WODLAND CLEARING AT SB 2

THREE CORNERED GARLIC & SPANISH BLUEBELL – TCG/SB 1

THREE CORNERED GARLIC AND SPANISH BLUEBELL INTERMITTENTLY ON BOTH SIDES OF DRIVEWAY AT TCG/SB 1

GROUND TO THE REAR (NORTH) OF THE HOUSE HEAVILY COLONISED BY THREE CORNERED GARLIC AT TCG/SB 1

SECTION 11 : SITE PHOTOGRAPHS - CONTD.

THREE CORNERED GARLIC & SPANISH BLUEBELL – TCG/SB 2 & TCG/SB 3

THREE CORNERED GARLIC AND SPANISH BLUEBELL SPREADING THROUGH NATIVE VEGETATION AT TCG/SB 2

SPANISH BLUEBELL SPREADING THROUGH NATIVE VEGETATION AT TCG/SB 3

THREE CORNERED GARLIC & SPANISH BLUEBELL – TCG/SB 4 & TCG/SB 5

-25-

ROADSIDE MARGIN AT TCG/SB 4 CONTAINING THREE CORNERED GARLIC & SPANISH BLUEBELL – LOOKING WEST

THREE CORNERED GARLIC & SPANISH BLUEBELL BESIDE THE PATH ALONG THE EASTERN WOODLAND FRINGE AT TCG/SB 5

SECTION 11 : SITE PHOTOGRAPHS – CONTD.

THREE CORNERED GARLIC & SPANISH BLUEBELL IN OPEN GROUND AT TCG/SB 6 LOOKING NORTH WEST

THREE CORNERED GARLIC & SPANISH BLUEBELL – TCG/SB 6

THREE CORNERED GARLIC & SPANISH BLUEBELL BOTH SIDES OF THE PATH ON THE EASTERN WOODLAND FRINGE AT TCG/SB 6

-27-

RHODODENDRON TREE IN THE EASTERN SECTOR OF THE PROPERTY NORTH OF "THE TERRACE" PUBLIC ROAD

SPREAD OF THE RHODODENDRON TREE IN THE EASTERN SECTOR OF THE PROPERTY NORTH OF "THE TERRACE" PUBLIC ROAD

SECTION 11 : SITE PHOTOGRAPHS - CONTD.

RHODODENDRON – RHO 2

-28-

RHODODENDRON TREE IN THE WESTERN SECTOR OF THE PROPERTY NORTH OF "THE TERRACE" PUBLIC ROAD

DETAIL OF THE RHODODENDRON TREE IN FLOWER

AMERICAN SKUNK CABBAGE – ASC 1

SMALL AMERICAN SKUNK CABBAGE PLANT IN WET GROUND - LOOKING NORTH

LARGER AMERICAN SKUNK CABBAGE PLANT BEYOND - LOOKING NORTH

SECTION 12 : CONCLUSIONS & RECOMMENDATIONS

- MONITORING SHOULD BE MAINTAINED DURING THE 2021 GROWING SEASON
- 2. FURTHER FORMAL SITE SURVEYS SHOULD BE SCHEDULED ACROSS THE SUMMER GROWING PERIOD, TO INSPECT FOR **RESULTS OF THE SURVEYS**
- 3. AREAS OF INFESTATION SHOULD BE SECURELY FENCED OFF WITHOUT DELAY, INCLUDING A 5 7m BUFFER ZONE AROUND OF PRIMARILY OF DEAD STEMS, THEN ADVISORY SIGNAGE ON STURDY TIMBER POSTS MAY SUFFICE
- THE MARGINS OF THE PUBLIC ROADWAYS IN THE VICINITY OF THE SUBJECT LANDS
- 5. THIS MANAGEMENT PLAN AND TREATMENT METHODOLOGY SHOULD BE SCREENED FOR POTENTIAL INPACTS ON EUROPEAN COMMUNITIES (SUSTAINABLE USE OF PESTICIDES) REGULATIONS 2012
- ERADICATION. SEE SECTIONS 13 TO 19 FOR FURTHER DETAILS
- 7. NO GROUND MAINTENANCE, OPENING UP OR ANY FURTHER GROUND DISTURBANCE SHOULD TAKE PLACE WITHIN THE SPECIES SPECIALIST, AND THEN ONLY UNDER STRICT SUPERVISION
- THE ESTATE IN GENERAL, AND THE HOTEL DEVELOPMENT SITE IN PARTICULAR
- RHIZOME SHOULD BE DISTURBED IN, OR REMOVED FROM, THE ZONES OF INFESTATION
- DURING CONSTRUCTION WORKS
- COMMENCEMENT OF A PRIMARY CONSTRUCTION CONTRACT

1. BASED ON THE TIME OF YEAR THAT THE 2021 SITE INSPECTION WAS CARRIED OUT, AND CONSIDERING THE GROUND DISTURBANCE WITHIN THE SOUTHERN WOODLAND SECTION OF THE LAND HOLDING, IT IS POSSIBLE THAT I.A.P.S. PLANTS ARE PRESENT BEYOND THE LIMITS RECORDED. IN APPLYING THE "PRECAUTIONARY PRINCIPLE", ON-GOING SITE

NEWLY EMERGENT I.A.P.S., INCLUDING KNOTWEEDS, AMERICAN SKUNK CABBAGE AND RHODODENDRON, AS WELL FOR FURTHER NEW SEASON GROWTH OF KNOTWEEDS RELATED TO THE IDENTIFIED STANDS. THE SURVEYS SHOULD INSPECT FOR VIABLE KNOTWEED PLANT/RHIZOME MATERIAL THAT MAY HAVE BEEN DISPERSED INTO OTHER AREAS OF THE PROPERTY. THIS REPORT AND MANAGEMENT PLAN SHOULD BE UPDATED ACCORDINGLY, TO TAKE ACCOUNT OF THE

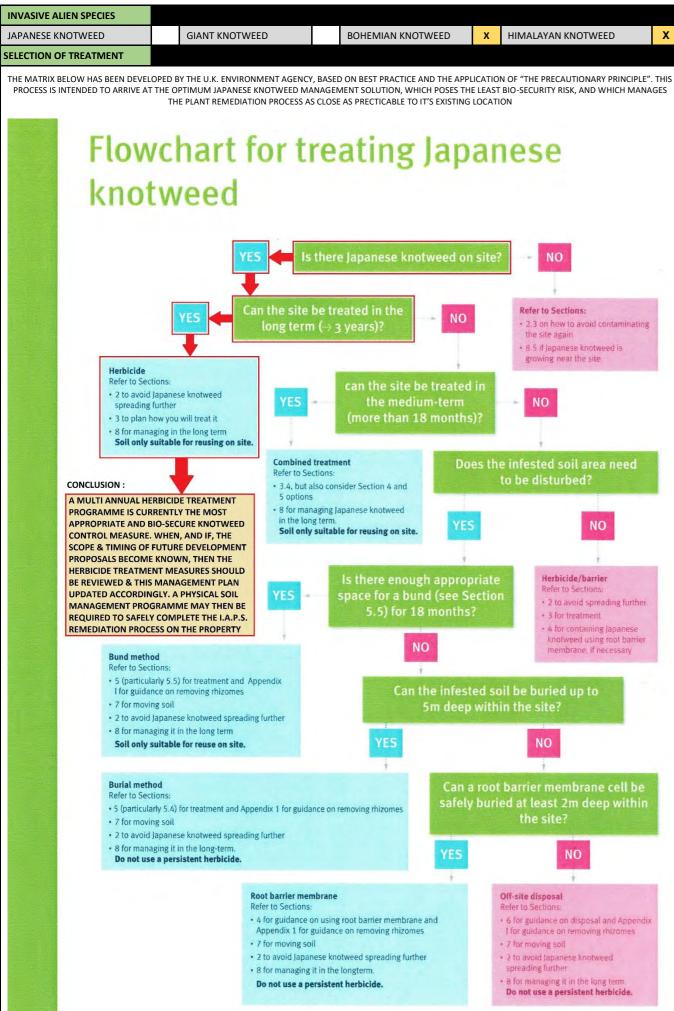
KNOTWEED STANDS. FENCING SHOULD BE STURDY AND SHOULD INCORPORATE APPROPRIATE WARNING / ADVISORY SIGNAGE. WHERE STANDS ARE SMALL, OR JUST INDIVIDUAL STEMS, OR HAVE BEEN PREVIOUSLY TREATED AND COMPRISE

4. THIS REPORT SHOULD BE CIRCULATED TO ALL MEMBERS OF THE DESIGN TEAM FOR THE PROPOSED RESIDENTIAL DEVELOPMENT, AS WELL AS PRESCRIBED AUTHORITIES AND ANY ADJOINING LAND OWNERS AFFECTED BY THE I.A.P.S. PRESENCE, WHERE EITHER RELEVANT OR NECESSARY TO DO SO. IN PARTICULAR THE LOCAL AUTHORITY SHOULD BE FORMALLY NOTIFIED OF THE SIGNIFICANT EXTENT OF THREE CORNERED GARLIC AND SPANISH BLUEBELL POPULATING

ECOLOGICAL RECEPTORS AND SENSITIVITIES, WHERE THEY EXIST, TO FULLY CONSIDER THE REQUIREMENTS OF S.I. 477 OF 2011 – THE EUROPEAN COMMUNITIES (BIRDS AND NATURAL HABITATS) REGULATIONS 2011 AND S.I. 155 OF 2012 – THE

6. IN GENERAL THE I.A.P.S. INFESTATIONS ARE HEALTHY AND SUITABLE FOR THE COMMENCEMENT OF A HERBICIDE CONTROL PROGRAMME DURING THE EARLY SUMMER OF 2021, ALTHOUGH THE THREE CORENERD GARLIC AND SPANISH BLUEBELL PLANTS MAY HAVE ALREADY SET SEED AND BE ENTERING SENESCENCE. A MULTI-ANNUAL TREATMENT PROGRAMME SHOULD BE AGREED AND IMPLEMENTED AT THE EARLIEST APPROPRIATE OPPORTUNITY, TO ARREST THE RISK OF FURTHER SPREAD OF KNOTWEEDS AND OTHER I.A.P.S., AND TO COMMENCE THE PROCESS OF CONTROL AND

FENCED AND SIGNED AREAS, WITHOUT PRIOR CONSULTATION WITH, AND THE DIRECTION OF, AN INVASIVE PLANT


8. ALL RELEVANT STAFF AND SITE VISITORS SHOULD BE BRIEFED ON THE IDENTIFICATION, RISKS AND DANGERS OF KNOTWEEDS AND OTHER I.A.P.S., AND ON THE SPECIFIC MEASURES, RESTRICTIONS AND PROTOCOLS TO BE DEPLOYED ON

9. IF ACCESS TO THE INFESTED AREAS IS NECESSARY, AND PARTICULARLY IF ANY ESSENTIAL WORK HAS TO BE CARRIED OUT WITHIN THE FENCED LOCATIONS, THEN THIS MUST ONLY BE DONE FOLLOWING FORMAL APPROVAL IN ADVANCE, AND AFTER THE PREPARATION AND AGREEMENT OF A "TASK SPECIFIC" METHOD STATEMENT. NO VIABLE PLANT MATERIAL OR

10. WHEN AND IF DEVELOPMENT PROPOSALS ARE APPROVED, AND DETAILED DESIGNS FINALISED, AND WHERE THESE WILL RESULT IN ENCROACHMENT INTO I.A.P.S. INFESTED AREAS, THEN A SITE SPECIFIC SOIL REMEDIATION PROGRAMME SHOULD BE DEVELOPED AND DEPLOYED, TO PROVIDE FOR MANAGEMENT OF I.A.P.S. INFESTED SOILS, AND ENSURE THEIR BIO-SECURE DISPOSAL. THE PLAN SHOULD INCLUDE FOR THE PROVISION OF VERTICAL AND HORIZONTAL ROOT BARRIER MEMBRANES WHERE REQUIRED, AND ALL OTHER MEASURES NECESSARY TO ENSURE STRICT BIO-SECURITY COMPLIANCE ACROSS THE CONSTRUCTION STAGE OF THE PROPOSED DEVELOPMENT. SECTION 19 OF THIS DOCUMENT ALSO PROVIDES SOME GUIDANCE ON MEASURES THAT SHOULD BE DEPLOYED, TO PREVENT THE EXTERNAL INTRODUCTION OF I.A.P.S.,

11. DETAILED GROUND REMEDIATION PROPOSALS SHOULD BE DEVELOPED IN THE POST PLANNING STAGE OF THE DEVELOPMENT PROCESS, IN CLOSE CO-ORDINATION WITH THE RELEVANT DESIGN TEAM CONSULTANTS AND, TO THE GREATEST EXTENT POSSIBLE, SHOULD BE CARRIED OUT AS A SEPERATE ENABLING WORKS CONTRACT IN ADVANCE OF THE

SECTION 13 : KNOTWEEDS - PROCESS OF TREATMENT SELECTION

SECTION 14 : KNOTWEEDS - MANAGEMENT & REMEDIATION PLAN

TREATMENT PLAN					
TREATMENT METHODOLOGY	 WITH THE CURRENT PREVAILING SITE CONDITIONS, DEVELOPMENT OF PARTS OF THE LANDS IN THE SHORT T SOLUTION ARE AS FOLLOWS : 1. FENCE OFF IDENTIFIED BOHEMIAN AND HIMALAYAI APPROPRIATE ADVISORY/WARNING SIGNAGE, AND AND 8 FOR TYPICAL EXAMPLES 2. CARRY OUT ON-GOING INSPECTIONS OF THE PROPE RESULTS OF THE CURRENT SITE SURVEY, AND TO SCF MAY NOT HAVE FULLY EMERGED AT THE TIME OF TH DURING LAND MANAGEMENT ACTIVITIES, AND M/ PREVIOUSLY UNINFESTED LOCATIONS 3. UPDATE THIS I.A.P.S. ASSESSMENT REPORT & MAN SURVEY 4. INSTITUTE A MULTI-ANNUAL HERBICIDE TREATM MANAGEMENT OF KNOTWEED STANDS BK 1, BK 2, I 5. FOR THE KNOTWEED LOCATIONS, WHEN THE DEVEL PLAN SHOULD BE PREPARED TO PHASE OUT THE HEF REMEDIATION OF INFESTED SOILS. THE PRECISE DET. INFORMATION AND DEVELOPED IN PARALLEL TO TH 6. THE CURRENT PREFERRED LONG TERM REMEDIATIO SOILS, FOR OFF-SITE DISPOSAL TO A SUITABLE LICE 	C OFF IDENTIFIED BOHEMIAN AND HIMALAYAN KNOTWEED LOCATIONS, USING SECURE FENCING, INCORPORATING OPRIATE ADVISORY/WARNING SIGNAGE, AND INCLUDING RECOMMENDED SAFE BUFFER ZONE – SEE APPENDIX 7 FOR TYPICAL EXAMPLES YOUT ON-GOING INSPECTIONS OF THE PROPERTY ACROSS THE 2021 SUMMER GROWING PERIOD, TO VALIDATE THE TS OF THE CURRENT SITE SURVEY, AND TO SCREEN THE SITE FOR ADDITIONAL INVASIVE ALIEN PLANT SPECIES WHICH NOT HAVE FULLY EMERGED AT THE TIME OF THE MAY 2021 SITE INSPECTION, OR WHICH MAY HAVE BEEN DISTURBED IG LAND MANAGEMENT ACTIVITIES, AND MAY HAVE BEEN INADVERTENTLY MOVED IN SOIL SPOIL MATERIAL TO OUSLY UNINFESTED LOCATIONS TE THIS I.A.P.S. ASSESSMENT REPORT & MANAGEMENT PLAN, AS NECESSARY, FOLLOWING EACH FOLLOW UP SITE FY UTE A MULTI-ANNUAL HERBICIDE TREATMENT PROGRAMME IN EARLY SUMMER 2021, TO COMMENCE THE AGEMENT OF KNOTWEED STANDS BK 1, BK 2, HK 1 AND HK2 HE KNOTWEED LOCATIONS, WHEN THE DEVELOPMENT PROGRAMME BECOMES CLEAR, AN UPDATED MANAGEMENT SHOULD BE PREPARED TO PHASE OUT THE HERBICIDE TREATMENT PROCESS, AND TO REPLACE IT WITH THE PHYSICAL DIATION OF INFESTED SOILS. THE PRECISE DETAILS AND TIMING OF THIS PLAN IS TO BE BASED ON UP TO DATE SURVEY MATION AND DEVELOPED IN PARALLEL TO THE FINALISATION OF DETAILED PROJECT DESIGN. URRENT PREFERRED LONG TERM REMEDIATION SOLUTION WOULD BE FOR THE CONTROLLED REMOVAL OF INFESTED FOR OFF-SITE DISPOSAL TO A SUITABLE LICENCED WASTE FACILITY, IN CONJUNCTION WITH THE USE OF VERTICAL BARRIER MEMBRANES INSTALLED TO PROTECT ANY RETAINED UNDERGROUND WALLS AND STRUCTURES THAT			
MANAGEMENT	INITIAL / MULTI-ANNUAL HERBICIDE CONTROL	x	ON-SITE BELOW GROUND SOIL CONTAINMENT CELL		
ELEMENTS	DEEP BURIAL – GREATER THAN 5m EXCAVATE AND DISPOSE OFF-SITE		х		
	EXCAVATE AND TREAT IN ON-SITE TEMPORARY BUND		CERTIFIED ROOT BARRIER MEMBRANE SYSTEMS	х	
HERBICIDE TREATMENT	FOLLIAR SPRAY STEM INJECTION		STEM INJECTION	х	
TECHNIQUE	CUT AND STEM FILL SP		SPOT SPRAY / LEAF WIPE / SWAB X		
	 STEM INJECTION TO CONSIST OF A 2ml DOSE OF UNDILUTED ROUNDUP BIACTIVE XL, OR ALTERNATIVE LICENCED GLYPHOSATE BASED AND AQUATIC APPROVED HERBICIDE, APPLIED FULLY IN ACCORDANCE WITH THE MANUFACTURERS INSTRUCTIONS. INJECTION TO BE APPLIED TO ALL SUITABLE HEALTHY KNOTWEED STEMS, AS CLOSE AS POSSIBLE TO THE BASE OF EACH HOLLOW STEM, USING A PROPRIETARY CALLIBRATED INJECTION UNIT AND NARROW GUAGE NEEDLE, WITH HERBICIDE SUPPLIED VIA A PRE-FILLED DISPENSING UNIT. ON-SITE HANDLING OF HERBICIDE TO BE AVOIDED SPOT SPRAY TO CONSIST OF A TARGETED DOSE OF ROUNDUP BIACTIVE XL IN SOLUTION, AT A DILUTION RATE OF 1:40, OR ALTERNATIVE GLYPHOSATE BASED AND AQUATIC APPROVED HERBICIDE, APPLIED FULLY IN ACCORDANCE WITH THE MANUFACTURERS INSTRUCTIONS. SPRAY TO BE APPLIED ONLY TO SUITABLE HEALTHY KNOTWEED LEAVES, AND APPLIED USING A PROPRIETRY SPRAY UNIT FITTED WITH AN ANTI DRIFT SHIELD. SPRAY ONLY TO BE APPLIED UNDER SUITABLE PREVAILING WEATHER CONDITIONS AND APPLIED AT A RATE AND PRESSURE WHICH MINIMISES RUN OFF FROM THE KNOTWEED LEAVES. SITE HANDLING AND MIXING OF HERBICIDE TO BE AVOIDED TO THE GREATEST EXTENT POSSIBLE 			LOW VIA A ATIVE RERS TTED	
ADDITIONAL WORKS	CUT AND BAG PLANT MATERIAL		SHRED & DISPOSE OF VIABLE PLANT MATERIAL		
HERBICIDE TYPE	APPROVED FOR USE WITH KNOTWEEDS	х	APPROVED FOR USE IN AQUATIC ENVIRONMENTS	x	
BIO-SECURITY	FENCE OFF INFESTATIONS AND FIT WARNING SIGNS	х	SET 5 – 7m SAFETY ZONE AROUND INFESTATIONS	х	
MEASURES					
MEASURES	ADVISE AFFECTED PARTIES / NOTIFY NEIGHBOURS		BRIEF WORKERS AND VISITORS TO PROPERTY	х	

SECTION 15 : THREE CORNERED GARLIC & SPANISH BLUEBELL – MANAGEMENT PLAN

-33-

TREATMENT PLAN				
TREATMENT METHODOLOGY	 FIT FENCING AND/OR APPROPRIATE SIGNAGE AT TH LOCATIONS – SEE APPENDIX 7 AND 8 FOR TYPICAL EX CARRY OUT ON-GOING INSPECTIONS ACROSS THE 20 CURRENT SITE SURVEY, AND TO SCREEN THE SITE FOR FULLY PRESENTED AT THE TIME OF THE MAY 2021 SITE MANAGEMENT ACTIVITIES, AND MAY HAVE BEEN I UNINFESTED LOCATIONS UPDATE THIS I.A.P.S. ASSESSMENT REPORT & MANAGE INSTITUTE A MULTI-ANNUAL HERBICIDE TREATMENT TWO TREATMENT VISITS PER YEAR, ALL TO BE CARRIE FOR PART OR ALL OF ANY OF THE THREE CORNERED OF ELEMENTS OF ANY PROPOSED DEVELOPMENT, WHEI ERADICATION HAS NOT BEEN VALIDATED, A DETAILE 	PREFERRED SOLUTION FOR MANAGING THREE CORNERED GARLIC & SPANISH BLUEBELL IS : FIT FENCING AND/OR APPROPRIATE SIGNAGE AT THE IDENTIFIED THREE CORNERED GARLIC AND SPANISH BLUEBELL LOCATIONS – SEE APPENDIX 7 AND 8 FOR TYPICAL EXAMPLES CARRY OUT ON-GOING INSPECTIONS ACROSS THE 2021 SUMMER GROWING PERIOD, TO VALIDATE THE RESULTS OF THE CURRENT SITE SURVEY, AND TO SCREEN THE SITE FOR ADDITIONAL INVASIVE ALIEN PLANT SPECIES WHICH MAY NOT HAVI FULLY PRESENTED AT THE TIME OF THE MAY 2021 SITE INSPECTION, OR WHICH MAY HAVE BEEN DISTURBED DURING LANG MANAGEMENT ACTIVITIES, AND MAY HAVE BEEN INADVERTENTLY MOVED IN SOIL SPOIL MATERIAL TO PREVIOUSLY UNINFESTED LOCATIONS UPDATE THIS I.A.P.S. ASSESSMENT REPORT & MANAGEMENT PLAN, AS NECESSARY, FOLLOWING EACH SITE SURVEY INSTITUTE A MULTI-ANNUAL HERBICIDE TREATMENT PROGRAMME, COMMENCING IN SUMMER 2021, CONSISTING OI TWO TREATMENT VISITS PER YEAR, ALL TO BE CARRIED OUT IN ADVANCE OF THE FLOWERING OF PLANTS FOR PART OR ALL OF ANY OF THE THREE CORNERED GARLIC AND SPANISH BLUEBELL SITES THAT COULD BE DISTURBED BY ELEMENTS OF ANY PROPOSED DEVELOPMENT, WHEN THE DEVELOPMENT PROGRAMME BECOMES CLEAR, AND WHERE ERADICATION HAS NOT BEEN VALIDATED, A DETAILED MANAGEMENT PLAN SHOULD BE PREPARED TO PHASE OUT THE HERBICIDE TREATMENT PROCESS, AND TO REPLACE IT WITH THE PHYSICAL REMEDIATION OF INFESTED SOILS		
MANAGEMENT	MULTI ANNUAL HERBICIDE CONTROL PROGRAMME	х	ON-SITE BELOW GROUND SOIL CONTAINMENT CELL	
ELEMENTS	DEEP BURIAL – GREATER THAN 5m		EXCAVATE AND DISPOSE OFF-SITE	х
	EXCAVATE AND TREAT IN ON-SITE TEMPORARY BUND		CERTIFIED ROOT BARRIER MEMBRANE SYSTEMS	
HERBICIDE	FOLLIAR SPRAY		STEM INJECTION	
TREATMENT TECHNIQUE	CUT AND STEM FILL		SPOT SPRAY / LEAF WIPE / SWAB	х
	SPOT SPRAY TO CONSIST OF A TARGETED DOSE OF ROUNDUP BIACTIVE XL IN SOLUTION, AT A DILUTION RATE OF 1:40, OR EQUIVALENT GLYPHOSATE BASED AND AQUATIC APPROVED HERBICIDE, APPLIED FULLY IN ACCORDANCE WITH THE MANUFACTURERS INSTRUCTIONS. HERBICIDE TO BE APPLIED USING A PROPRIETRY UNIT FITTED WITH AN ANTI DRIFT SHIELD, AND THEN ONLY UNDER SUITABLE WEATHER CONDITIONS. THE RATE AND PRESSURE OF THE SPRAY MUST MINIMISE THE RUN-OFF FROM TARGET PLANT LEAVES.			
ADDITIONAL WORKS	CUT AND BAG PLANT MATERIAL		SHRED & DISPOSE OF VIABLE PLANT MATERIAL	
HERBICIDE	APPROVED FOR 3 CORNERED GARLIC/SPANISH BLUEBELL	х	APPROVED FOR USE IN AQUATIC ENVIRONMENTS	х
BIO-SECURITY	FENCE OFF INFESTATIONS AND FIT WARNING SIGNS	х	SET SAFETY ZONE AROUND INFESTATIONS	х
MEASURES	MONITOR AND RECORD	х	BRIEF WORKERS AND VISITORS TO PROPERTY	х
			•	-

SECTION 16 : RHODODENDRON - MANAGEMENT PLAN

TREATMENT PLAN				
TREATMENT METHODOLOGY	 THE PREFERRED SOLUTION FOR MANAGING RHODODENDRON IS : 1. FENCE OFF THE IDENTIFIED RHODODENDRON LOCATIONS USING SECURE FENCING AND APPROPRIATE SIGNAGE 2. CARRY OUT ON-GOING INSPECTIONS ACROSS THE 2021 SUMMER GROWING PERIODS, TO SCREEN THE SITE FOR ADDITIONAL RHODODENDRON SEEDLINGS, AND UPDATE THIS I.A.P.S. ASSESSMENT REPORT & MANAGEMENT PLA ACCORDINGLY 3. INSTITUTE A MULTI-ANNUAL PHYSICAL & HERBICIDE TREATMENT PROGRAMME, COMMENCING IN SUMMER 202 CONSISTING OF THE CUTTING AND IN-SITU CHIPPING OF THE ABOVE GROUND RHODODENDRON PLANT MATERIAL, AI THE DIGGING OUT OF THE PLANTS' ROOT SYSTEM TO THE GREATEST EXTENT POSSIBLE. IF THE ROOT, OR PART OF IT, H TO REMAIN IN THE GROUND THEN THE RESIDUAL PLANT STUMP SHOULD BE SWAB TREATED WITH APPROVED HERBICIDE WORKS TO BE CARRIED OUT IN ADVANCE OF THE PLANT FLOWERING PERIOD WHEREVER POSSIBLE 4. CONTINUE THE TREATMENT METHODOLOGY IN THE FOLLOWING YEARS AS REQUIRED, INCLUDING THE PULLING OF A NEW SEEDLINGS THAT PRESENT THEMSELVES, UNTIL THE REPOSITORY OF VIABLE SEEDS HAS BEEN EXHAUSTED 		PLAN 2021, AND , HAS CIDE.	
MANAGEMENT ELEMENTS	PHYSICAL & HERBICIDE CONTROL PROGRAMME	х	ON-SITE BELOW GROUND SOIL CONTAINMENT CELL	
HERBICIDE	FOLLIAR SPRAY		STEM INJECTION	
TECHNIQUE	CUT AND STEM FILL		SPOT SPRAY / LEAF WIPE / SWAB	х
HERBICIDE	APPROVED FOR RHODODENDRON	х	APPROVED FOR USE IN AQUATIC ENVIRONMENTS	х
BIO-SECURITY MEASURES	FENCE OFF INFESTATIONS AND FIT WARNING SIGNS	х	SET SAFETY ZONE AROUND INFESTATIONS	х
IVIEASURES	MONITOR AND RECORD	х	BRIEF WORKERS AND VISITORS TO PROPERTY	х

SECTION 17 : AMERICAN SKUNK CABBAGE – MANAGEMENT PLAN

TREATMENT PLAN				
TREATMENT METHODOLOGY	THE PREFERRED SOLUTION FOR MANAGING AMERICAN SKI	JNK CA	ABBAGE IS :	
METHODOLOGY	 CARRY OUT ON-GOING INSPECTIONS ACROSS THE ADDITIONAL EMERGING AMERICAN SKUNK CABBA MANAGEMENT PLAN ACCORDINGLY INSTITUTE A MULTI-ANNUAL PHYSICAL CONTROL F DIGGING OUT OF THE PLANT AND ASSOCIATED ROC PLANT MATERIAL TO BE LEFT ON SITE IN A SEALED LOCATION, TO ROT DOWN NATURALLY. REMOVAL TO 	2021 GE PL ROGR T SYS HOLE BE IN	ATIONS USING SECURE FENCING AND APPROPRIATE SIG SUMMER GROWING PERIODS, TO SCREEN THE SITE ANTS, AND UPDATE THIS I.A.P.S. ASSESSMENT REPO AMME, COMMENCING IN SUMMER 2021, CONSISTING TEM, AND DOUBLE BAGGING ALL EVIDENT PLANT GROV DING UNIT, LOCATED IN A SAFE AND CLEARLY DESIGN. ADVANCE OF THE FLOWERING AND SEEDING OF PLANTS WING YEARS, UNTIL THE SEED REPOSITORY IS EXHAUSTED	FOR RT & G OF WTH. ATED
MANAGEMENT	PHYSICAL CONTROL PROGRAMME	х	ON-SITE BELOW GROUND SOIL CONTAINMENT CELL	
ELEWIENTS	DEEP BURIAL – GREATER THAN 5m		EXCAVATE AND DISPOSE OFF-SITE	
HERBICIDE	FOLLIAR SPRAY STEM INJECTION		STEM INJECTION	
TECHNIQUE	CUT AND STEM FILL		SPOT SPRAY / LEAF WIPE / SWAB	
HERBICIDE	APPROVED FOR AMERICAN SKUNK CABBAGE		APPROVED FOR USE IN AQUATIC ENVIRONMENTS	
BIO-SECURITY MEASURES	FENCE OFF INFESTATIONS AND FIT WARNING SIGNS	х	SET SAFETY ZONE AROUND INFESTATIONS	х
IVIEASURES	MONITOR AND RECORD	х	BRIEF WORKERS AND VISITORS TO PROPERTY	x

SECTION 18 : TREATMENT PROGRAMME

PROGRAMME	
STAGE 1 SPRING/SUMMER 2021	 DEPLOY BIOSECURITY MEASURES, COMPRISIN CARRY OUT FOLLOW UP SITE SURVEYS, TO INS UPDATE ASSESSMENT REPORT AND MANAGER
STAGE 2 SUMMER 2021	 CARRY OUT THE FIRST HERBICIDE TREATMEN SPRAYING, AS REQUIRED CARRY OUT TWO HERBICIDE TREATMENTS AT OF SPOT SPRAYING,AS REQUIRED CARRY OUT PHYSICAL AND HERBICIDE CONT CUTTING AND IN-SITU CHIPPING OF THE ABOY OF THE PLANTS ROOT SYSTEM. SWAB THE FI HERBICIDE, APPLIED STRICTLY IN ACCORDANCE EMERGING RHODODENDRON SEEDLINGS CARRY OUT PHYSICAL CONTROL TREATMENT OUT AND DOUBLE BAGGING OF PLANT MATE SAFE AND CLEARLY DESIGNATED LOCATION, A INSPECT FENCING AND SIGNAGE. CARRY OUR CARRY OUT FOLLOW UP SITE SURVEYS, TO INS UPDATE ASSESSMENT REPORT AND MANAGEI IF PLANNING PERMISSION IS GRANTED AND ERADICATION HAVING BEEN ACHIEVED, PREF SPECIES REMEDIATION PLAN, TO FULLY REW ADVANCE OF THE COMMENCEMENT OF CONS
STAGE 3 SUMMER/AUTUMN 2021	 RECORD RESULTS OF SUMMER HERBICIDE TRE CARRY OUT THE SECOND HERBICIDE TREATME SPRAYING, AS REQUIRED INSPECT FENCING AND SIGNAGE. CARRY OUR CARRY OUT FOLLOW UP SITE SURVEYS, TO INS UPDATE ASSESSMENT REPORT AND MANAGED
STAGE 4 SPRING 2022 ONWARDS	CONTINUE IMPLEMENTATION OF THE MULTI- MEASURES, WITH SUFFICIENT TREATMENT, CC CONDITIONS AND PARTICULAR I.A.P.S. GRO ERADICATION OF ALL I.A.P.S. STANDS

NG SECURE FENCING AND ADVISORY / WARNING SIGNAGE ISPECT FOR NEW, EMERGING AND SPREADING I.A.P.S. EMENT PLAN, BASED ON OUTCOME OF SURVEYS

NT AT KNOTWEED STANDS , CONSISTING OF STEM INJECTION AND SPOT

T THREE CORNERED GARLIC AND SPANISH BLUEBELL STANDS , CONSISTING

NTROL TREATMENTS AT RHODODENDRON STANDS, CONSISTING OF THE OVE GROUND RHODODENDRON PLANT MATERIAL, AND THE DIGGING OUT FRESH CUT STUMP OF ANY RESIDUAL PLANT MATERIAL WITH APPROVED CE WITH THE MANUFACTURERS DIRECTIONS. INSPECT FOR, AND PULL, ANY

TS AT THE AMERICAN SKUNK CABBAGE STAND, CONSISTING OF DIGGING FERIAL, AND ITS PLACEMENT IN A SECURE BULK CONTAINER, LOCATED IN A AND LEFT TO ROT DOWN ON SITE

ANY NECESSARY REPAIRS / REPLACEMENT / RE-CONFIGURATION SPECT FOR NEW, EMERGING AND SPREADING I.A.P.S.

EMENT PLAN, BASED ON OUTCOME OF SURVEYS

ND DEVELOPMENT OF THE LANDS IS SCHEDULED, IN ADVANCE OF FULL EPARE AND IMPLEMENT A CONSTRUCTION STAGE INVASIVE ALIEN PLANT MEDIATE THE INFESTED SOILS AT THE AFFECTED I.A.P.S. LOCATIONS, IN STRUCTION ACTIVITIES

REATMENTS AND PHYSICAL CONTROL MEASURES IENT AT KNOTWEED STANDS , CONSISTING OF STEM INJECTION AND SPOT

ANY NECESSARY REPAIRS / REPLACEMENT / RE-CONFIGURATION ISPECT FOR NEW, EMERGING AND SPREADING I.A.P.S. EMENT PLAN, BASED ON OUTCOME OF SURVEYS

I-ANNUAL HERBICIDE TREATMENT PROGRAMME AND PHYSICAL CONTROL CONTROL AND INSPECTION VISITS, SCHEDULED TO SUIT THE EVOLVING SITE ROWTH CYCLES, AND AS NECESSARY TO ACHIEVE AND VALIDATE FULL

SECTION 19 : I.A.P.S. - ADDITIONAL CONSTRUCTION STAGE I.A.P.S. MANAGEMENT MEASURES

REMEDIATION PLAN	
OVERVIEW	NOTWITHSTANDING THE FACT THAT THE I.A.P.S. PRESENT ON THE PROPERTY MAY BE EITHER ERADICATED OR REMEDIATED BY THE TIME CONSTRUCTION ACTIVITIES ARE SCHEDULED TO COMMENCE, THERE IS ALWAYS A RISK TO PROPERTIES FROM THE INTRODUCTION OF I.A.P.S. FROM THE OUTSIDE. THE PRIMARY PATHS OF INTRODUCTION ARE VIA :
	 PHYSICAL SPREAD OF I.A.P.S. PLANTS FROM ADJACENT / ADJOINING LANDS AIRBORNE DISPERSAL OF SEEDS OR OTHER VIABLE I.A.P.S. MATERIAL IMPORTED SOILS AND OTHER FILL/LANDSCAPING MATERIALS CONTAINING VIABLE SEED OR OTHER I.A.P.S. MATERIAL SOIL ON MACHINERY AND VEHICLES CONTAMINATED WITH VIABLE SEEDS OR OTHER I.A.P.S. MATERIAL TOOLS AND FOOTWEAR CONTAINING VIABLE SEED OR OTHER I.A.P.S. MATERIAL
	CONSTRUCTION WORKS, BY THEIR NATURE, POSE A HEIGHTENED RISK OF THE INTRODUCTION OF I.A.P.S. ONTO DEVELOPMENT SITES, PARTICULARLY VIA ITEMS 3. – 5. ABOVE. THEREFORE IT IS ADVISED THAT ALL CONTRACTORS, AND SUB-CUNTRACTORS, SHOULD EMPLOY I.A.P.S. MANAGEMENT PROCEDURES AS AN INTEGRAL PART OF THEIR CONSTRUCTION ACTIVITIES, INCLUDING DEVELOPMENT ON THIS PROPERTY FOR INFORMATION PURPOSES, THE SCHEMATIC OF THE DEVELOPMENT PROPOSAL IS INCLUDED BELOW
PRIMARY MANAGEMENT MEASURES	 THE CONTRACTOR SHOULD CONSIDER PREPARING A PROJECT SPECIFIC I.A.P.S. STANDARD OPERATING PROCEDURE DOCUMENT, IN ADVANCE OF WORK COMMENCEMENT. THE DOCUMENT SHOULD BE PREPARED BY AN I.A.P.S. SPECIALIST, AND SHOULD COVER THE BIO-SECURITY MEASURES TO BE TAKEN, INCLUDING THE MAINTENANCE OF RECORDS, TO SCREEN FOR THE INTRODUCTION OF I.A.P.S. AND TO ENABLE THEIR TRACING, IF SUCH AN INTRODUCTION OCCURS, INCLUDING : VALIDATION THAT ALL MACHINERY / VEHICLES ARE FREE OF I.A.P.S., PRIOR TO THEIR FIRST INTRODUCTION TO SITE CERTIFICATION FROM THE SUPPLIERS THAT ALL IMPORTED SOILS AND OTHER FILL/LANDSCAPING MATERIALS ARE FREE OF I.A.P.S. A REGULAR SCHEDULE OF SITE INSPECTIONS ACROSS THE I.A.P.S. GROWING SEASONS, FOR THE DURATION OF THE CONSTRUCTION WORKS PROGRAMME

RESIDENTIAL DEVELOPMENT LANDS LACKENROE GLOUNTHAUNE CO. CORK

APPENDIX 1 Bohemian Knotweed I.D. Sheet

16 SEPTEMBER 2021

T:086-2621443/062-71589 W : <u>www.knotweed.ie</u> E : <u>info@knotweed.ie</u>

Inland Fisheries Ireland : Bohemian Knotweed I.D. Sheet

RESIDENTIAL DEVELOPMENT LANDS LACKENROE GLOUNTHAUNE CO. CORK

APPENDIX 2 Himalayan Knotweed I.D. Sheet

-39-

LACKENROE GLOUNTHAUNE

CO. CORK

APPENDIX 3 Three Cornered Garlic I.D. Sheet

RESIDENTIAL DEVELOPMENT LANDS

www.nonnativespecies.org

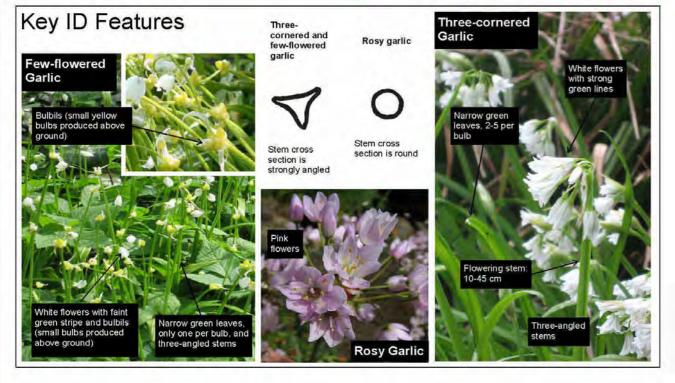
Produced by Alison Jukes, Max Wade, Vicky Ames and Kelly McKee of RPS

Non-Native Garlics

Species Description

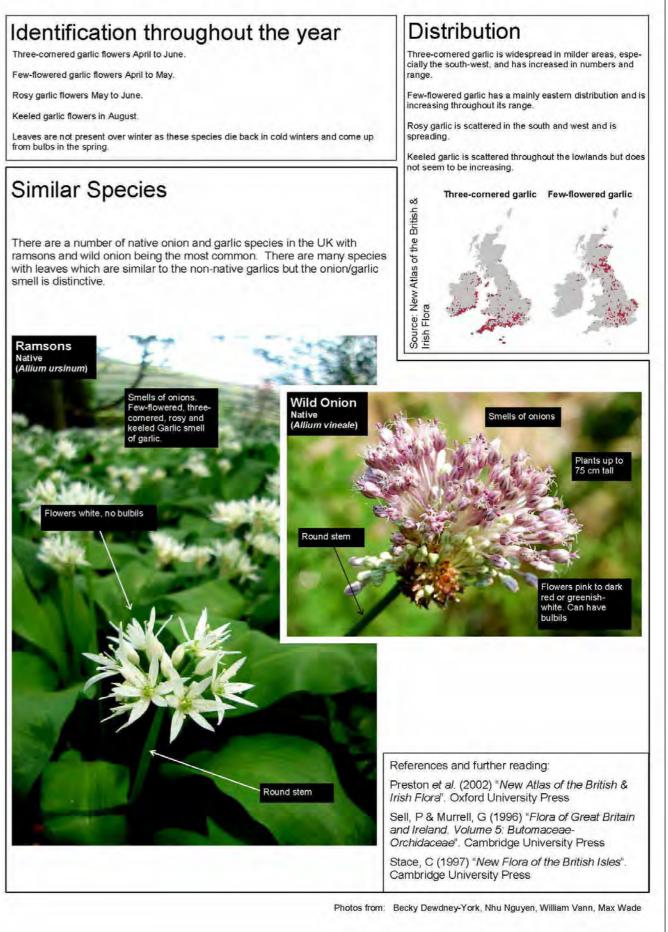
Scientific names: Allium species AKA: Gerllyg (Welsh)

Native to: Mediterranean, Caucasus and Iran Habitat: Roadsides, hedge banks, riverbanks, field margins, rough and waste ground and in woodland


Garlics are perennial herbs with bulbs and grass-like leaves, usually smelling of garlic when fresh and crushed. The most widespread invasive garlics in the UK are Three-cornered Garlic Allium triquetrum and Few-flowered Garlic Allium paradoxum. Other invasive species include Rosy Garlic Allium roseum and Keeled Garlic Allium carinatum.

The seeds of Three-cornered Garlic are spread naturally by ants. It was established initially in Guernsey in 1849 and is now naturalised and increasingly abundant and widespread in milder areas of the UK, especially in the south and west, with scattered, sometimes short-lived, populations elsewhere

Few-flowered Garlic spreads by means of bulbils (small bulbs produced above ground). It was first recorded in the wild near Edinburgh in 1863 and can be very invasive in disturbed habitats. It is increasingly abundant throughout its range, especially in southern Scotland and is most common in the east of Britain.


Rosy Garlic was first recorded in the wild in 1837 and is spreading, especially in south-west England, Keeled Garlic has been naturalised since at least 1806. but there is little evidence of a significant increase in range over the last 50 years.

Three-cornered garlic flowers April to June.

Keeled garlic flowers in August

Non Native Species Secretariat : Non-native Garlics I.D. Sheet - Page 2

WIKIPEDIA

Hyacinthoides hispanica

Hyacinthoides hispanica (syn. Endymion hispanicus or Scilla hispanica), the Spanish bluebell, is a spring-flowering bulbous perennial native to the Iberian Peninsula. It is one of around 11 species in the genus Hyacinthoides, others including the common bluebell (Hyacinthoides non-scripta) in northwestern Europe, and the Italian bluebell (Hyacinthoides italica) further east in the Mediterranean region.[1]

It is distinguished from the common bluebell by its paler and larger blue flowers, which are less pendulous and not all drooping to one side like the common bluebell; plus a more erect flower stem (raceme), broader leaves, blue anthers (where the common bluebell has creamy-white ones) and little or no scent compared to the strong fragrant scent of the northern species. Like Hyacinthoides non-scripta, both pink- and white-flowered forms occur.

The Spanish bluebell was introduced in the United Kingdom. Since then, it has hybridised frequently with the native common bluebell and the resulting hybrids are regarded as invasive. The resulting hybrid Hyacinthoides × massartiana and the Spanish bluebell both produce highly fertile seed but it is generally the hybrid that invades areas of the native common bluebell. This has caused the common bluebell to be viewed as a threatened species.

The Spanish bluebell is also cultivated as a garden plant, and several named cultivars exist with flowers in various shades of white, pink and blue.

References

1. World Checklist of Selected Plant Families (http://apps.kew.org/wcsp/home.do), The Board of Trustees of the Royal Botanic Gardens, Kew, retrieved 2011-07-05, search for "Hyacinthoides"

General

- The-Tree.org: Bluebell (https://web.archive.org/web/20060427035443/http://www.thetree.org.uk/EnchantedForest/WoodlandFlowers/bluebell.htm) (includes key to identification of hybrids)
- Huxley, A. (1992), New RHS Dictionary of Gardening vol. 2: 604. Macmillan.

External links

Media related to Hyacinthoides hispanica at Wikimedia Commons

Retrieved from "https://en.wikipedia.org/w/index.php?title=Hyacinthoides_hispanica&oldid=889188975"

This page was last edited on 24 March 2019, at 02:10 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

RESIDENTIAL DEVELOPMENT LANDS LACKENROE GLOUNTHAUNE CO. CORK

APPENDIX 4

Spanish Bluebell I.D. Sheet

-45-

Native bluebells (Hyacinthoides non-scripta)

- Distinctive 'droop' like the top of a shepherd's crook
- Sweet, cool perfume
- Narrow bell-shaped flowers with rolled back tips
- Creamy white pollen

If your bluebells have all of these characteristics then they're native bluebells.

Spanish bluebells (Hyacinthoides hispanica) and hybrids

- Upright stems
- No scent
- Conical bell-shaped flowers with open tips
- Blue pollen

If the bluebells you see have some or all of these characteristics then they're not a pure native bluebell.

Berkshire Buckinghamshire & Oxfordshire Wildlife Trusts – Spanish Bluebell identification

RESIDENTIAL DEVELOPMENT LANDS LACKENROE GLOUNTHAUNE CO. CORK

> **APPENDIX 5** Rhododendron I.D. Sheet

www.nonnativespecies.org

Produced by Olaf Booy, Max Wade and Vicky White of RPS

Usually pink / purple, occasionally whiteish

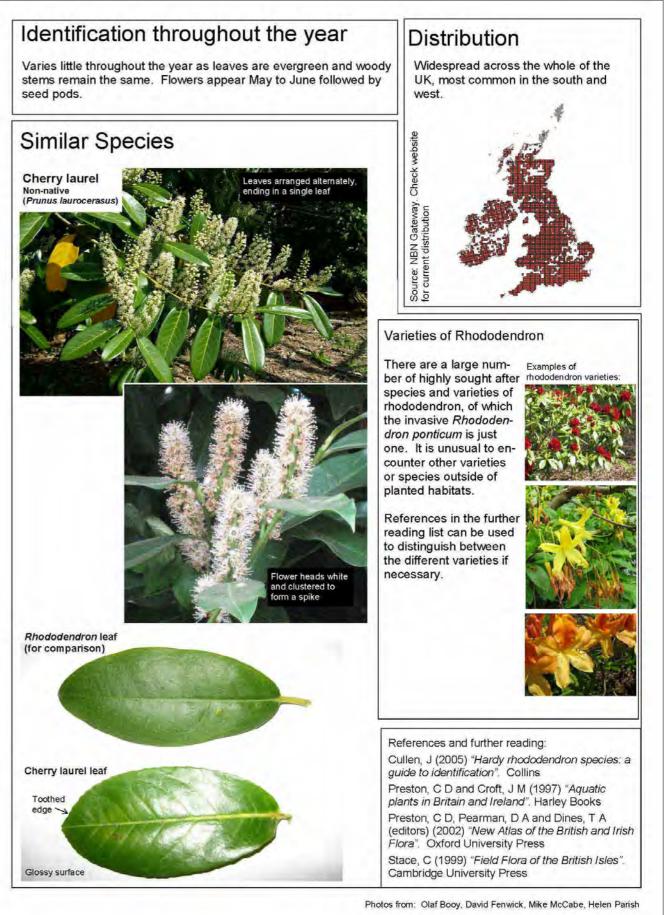
Rhododendron

Species Description

Scientific name: Rhododendron ponticum AKA: Rhododendron

Native to: South-west Europe and southwest Asia. UK's stock is believed to come from Spain.

Habitat: Common on acid, peaty or sandy soils in woodland, heathland, rocky hillsides, river banks, gardens and parks


A large evergreen shrub with leathery leaves, attractive purple to pink flowers and solid stems forming into a trunk when mature. Relatively easy to identify, but can be confused with cherry laurel or horticultural varieties of rhododendron. However, horticultural varieties of rhododendron are relatively rarely found in the wild. Spreads by suckers and seed, which are small and carried long distances by wind.

Introduced by gardeners in the late 18th century into parks and woodlands, where it was also used for game cover. Still widely planted, particularly by gardeners. Often grows in ecologically sensitive habitats, such as heath, broad-leaved woodland and dunes, where dense growth can considerably alter the structure of the habitat.

For details of legislation go to www.nonnativespecies.org/

Key ID Features

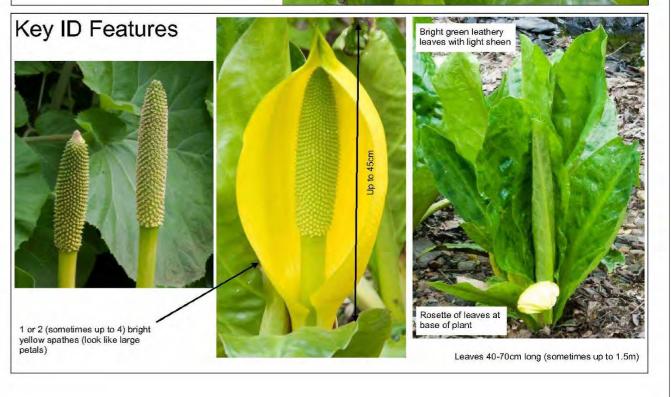
Non Native Species Secretariat : Rhododendron I.D. Sheet - Page 2

RESIDENTIAL DEVELOPMENT LANDS LACKENROE GLOUNTHAUNE CO. CORK

APPENDIX 6 American Skunk Cabbage I.D. Sheet

American Skunk-cabbage

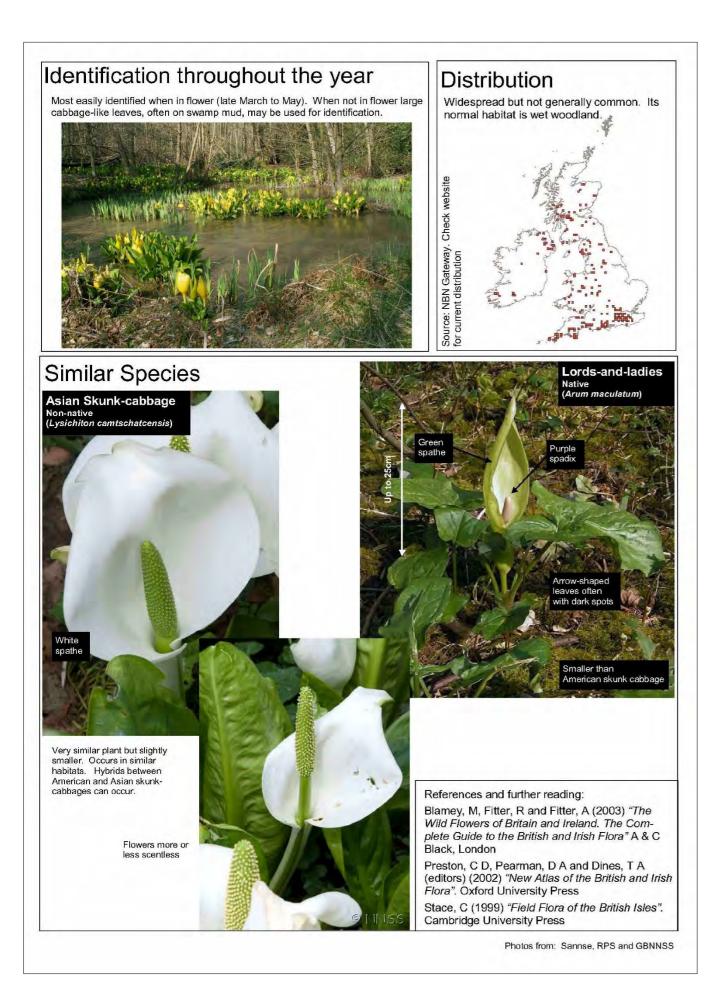
Species Description


Scientific name: Lysichiton americanus AKA: Western Skunk-cabbage Native to: Western North America Habitat: Wet woodland, streamsides, muddy pond margins

Yellow flowers are produced in spring (late March to May) that resemble those of wild arum (lords-and-ladies). They emit a strong odour like that of a skunk. The plant has a basal rosette of stemmed leathery leaves, usually up to about 70cm long. It is a tall herb growing up to 1.5m in height. Green berries are produced in the summer.

American skunk-cabbage needs a wet site but has no specific soil requirements - it can occur in soils from light sand to heavy clay that are acid, neutral or alkaline. It is a hardy perennial lowland plant, but can grow at altitudes of up to 1400m.

Seeds may be dispersed via waterways but also probably by birds and mammals, as occurs in the native range.


American skunk-cabbage is able to form dense stands and may negatively impact on some native plants, out-competing them by shadowing.

www.nonnativespecies.org

Produced by Peter Brown, Olaf Booy and Mark Hill

RESIDENTIAL DEVELOPMENT LANDS LACKENROE GLOUNTHAUNE CO. CORK

> **APPENDIX 7** Sample Site Signage

-51-

-53-

SAMPLE SIGN 1

SAMPLE SIGN 3

SAMPLE SIGN 4

-55-

SAMPLE SIGN 5

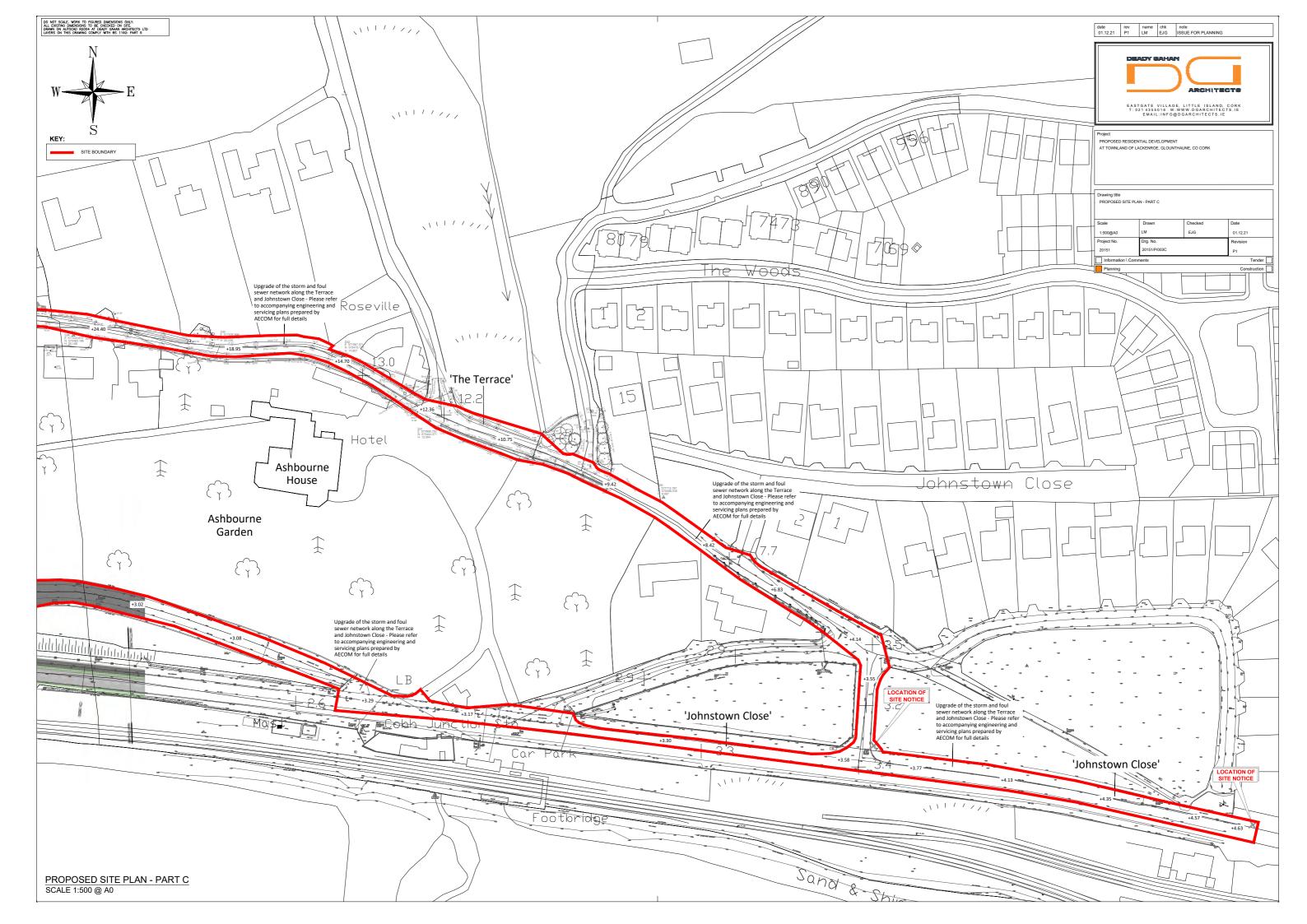
RESIDENTIAL DEVELOPMENT LANDS LACKENROE GLOUNTHAUNE CO. CORK

> **APPENDIX 8** Sample Site Fencing

-57-

SAMPLE FENCING 1 – POST AND WOVEN MESH FENCING

SAMPLE FENCING 2 – HEAVY DUTY HERRAS FENCING


aecom.com

VOLUME III | Appendices

